Skip to main content
Log in

Adaptation and shunting inhibition leads to pyramidal/interneuron gamma with sparse firing of pyramidal cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Gamma oscillations are a prominent phenomenon related to a number of brain functions. Data show that individual pyramidal neurons can fire at rate below gamma with the population showing clear gamma oscillations and synchrony. In one kind of idealized model of such weak gamma, pyramidal neurons fire in clusters. Here we provide a theory for clustered gamma PING rhythms with strong inhibition and weaker excitation. Our simulations of biophysical models show that the adaptation of pyramidal neurons coupled with their low firing rate leads to cluster formation. A partially analytic study of a canonical model shows that the phase response curves with a near zero flat region, caused by the presence of the slow adaptive current, are the key to the formation of clusters. Furthermore we examine shunting inhibition and show that clusters become robust and generic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bartos, M., Vida, I., Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8, 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Börgers, C., & Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation, 15 (3), 509–539.

    Article  PubMed  Google Scholar 

  • Börgers, C., & Kopell, N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Computation, 17 (3), 557–608.

    Article  PubMed  Google Scholar 

  • Börgers, C., Epstein, S., Kopell, N. (2005). Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proceedings of the National Academy of Science USA, 102 (19), 7002–7007.

    Article  Google Scholar 

  • Cunningham, M. O., Whittington, M. A., Bibbig, A., Roopun, A., LeBeau, F. E. N., Vogt, A., Monyer, H., Buhl, E. H., Traub, R. (2004). A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proceedings of the Natural Academy of Sciences USA, 101, 7152–7157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engel, A., Fries, P., Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G. B., Pascal, M., Gutkin, B. S. (2001). The Effects of Spike Frequency Adaptation and Negative Feedback on the Synchronization of Neural Oscillators. Neural Computation, 13, 1285–1310.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1991). Journal of Mathematical Biology, 29, 195–217.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50 (1), 125–146.

    Article  Google Scholar 

  • Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. Journal Differential Equations, 31, 53–98.

    Article  Google Scholar 

  • Fries, P., Reynolds, J., Rorie, A., Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.

    Article  CAS  PubMed  Google Scholar 

  • Golomb, D., & Rinzel, J. (1994). Clustering in globally coupled inhibitory neurons. Physica D, 72, 259–282.

    Article  Google Scholar 

  • Gray, C. M. (1999). The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron, 24, 31–47.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, H. Y., & Gutkin, B. S. (2007). Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural Computation, 19 (3), 706–729.

    Article  PubMed  Google Scholar 

  • Gutkin, B. S., Ermentrout, G. B., Reyes, A. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  PubMed  Google Scholar 

  • Jia, X., Smith, M. A., Kohn, A. (2011). Stimulus selectivity and spatial coherence of gamma components of the local field potential. Journal of Neuroscience, 31 (25), 9390–9403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilpatrick, Z., & Ermentrout, B. E. (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLOS Computational Biology, to appear.

  • Krupa, M., & Szmolyan, P. (2001). Extending singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions. SIAM Journal on Mathematical Analysis, 33, 286–314.

    Article  Google Scholar 

  • von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38 (3), 301–13.

    Article  CAS  PubMed  Google Scholar 

  • Stiefel, K. M., Gutkin, B. S., Sejnowski, T. E. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal Computational Neuroscience, 29, 289–301.

    Article  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Peronnet, F., Pernier, J. (1998). Induced gamma- band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience, 18, 4244–4254.

  • Vida, I., Bartos, M., Jonas, P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron, 49, 107– 117.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiology Review, 90, 1195–1268.

    Article  Google Scholar 

  • Whittington, M. A., Stanford, I. M., Colling, S. B., Jefferys, J. R. G., Traub, R. D. (1997). Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice . Journal Physiology, 502, 591–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research of MK was supported in part by a grant from the city of Paris (Bourse de la ville de Paris) and by CLS NWO grant to Stan Gielen. The research of BG was supported by the CNRS, INSERM, ANR, ENP, by Ville de Paris and by the Basic Research Program of the National Research University Higher School of Economics, Moscow, Russia. The research of SG was supported in part by the CLS program of NWO.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krupa.

Additional information

Action Editor: N. Kopell

Appendix: Review of the result of Krupa and Szmolyan (2001) and the estimate of T e s c

Appendix: Review of the result of Krupa and Szmolyan (2001) and the estimate of T e s c

Consider

$$\begin{array}{@{}rcl@{}} \frac{d x}{dt}&=&f(x,y)=-y +x^{2}+O(xy,x^{2})\\ \frac{d y}{dt} &=&-\epsilon(1+O(x,y)). \end{array} $$
(30)

Note that system (30) has the same form as system (2.5) in Krupa and Szmolyan (2001). The following estimate is a consequence of Theorem 2.1 and Remark 2.11 in Krupa and Szmolyan (2001). Let Ω0 be the smallest positive zero of the function

$$J_{-1/3}\left (\frac{2z^{2/3}}{3}\right )+J_{1/3}\left (\frac{2z^{2/3}}{3}\right ), $$

where J −1/3 (resp. J 1/3) are Bessel functions of the first kind.

Proposition 3

Let y 0 ≥0 and x 0 <0 satisfy f(x 0 ,y 0 )=0. Also fix δ>0. Consider a family of solutions of Eq. ( 30 ) with initial conditions x(0)=x 0 +O(ε) and y(0)=y 0 . Let (δ,h(ε)) be the intersection point of this trajectory with the line x=δ. Then, for sufficiently small δ,

$$ h(\epsilon)={\Omega}_{0}\epsilon^{2/3}+O(\epsilon\ln\epsilon). $$
(31)

Now let T be the time needed for a trajectory with initial condition x 0<0, y 0=0. It follows from Eq. (31) and the form of Eq. (30) that ε T≈−Ω0 ε 2/3. It follows that

$$ T\approx-{\Omega}_{0}\epsilon^{-1/3}. $$
(32)

By scaling the variables and time (30) can be brought to the form Eq. (15) and estimate Eq. (16) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupa, M., Gielen, S. & Gutkin, B. Adaptation and shunting inhibition leads to pyramidal/interneuron gamma with sparse firing of pyramidal cells. J Comput Neurosci 37, 357–376 (2014). https://doi.org/10.1007/s10827-014-0508-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0508-6

Keywords

Navigation