Skip to main content

Advertisement

Log in

A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Inter-segmental coordination is crucial for the locomotion of animals. Arthropods show high variability of leg numbers, from 6 in insects up to 750 legs in millipedes. Despite this fact, the anatomical and functional organization of their nervous systems show basic similarities. The main similarities are the segmental organization, and the way the function of the segmental units is coordinated. We set out to construct a model that could describe locomotion (walking) in animals with more than 6 legs, as well as in 6-legged animals (insects). To this end, we extended a network model by Daun-Gruhn and Tóth (Journal of Computational Neuroscience, doi:10.1007/s10827-010-0300-1, 2011). This model describes inter-segmental coordination of the ipsilateral legs in the stick insect during walking. Including an additional segment (local network) into the original model, we could simulate coordination patterns that occur in animals walking on eight legs (e.g., crayfish). We could improve the model by modifying its original cyclic connection topology. In all model variants, the phase relations between the afferent segmental excitatory sensory signals and the oscillatory activity of the segmental networks played a crucial role. Our results stress the importance of this sensory input on the generation of different stable coordination patterns. The simulations confirmed that using the modified connection topology, the flexibility of the model behaviour increased, meaning that changing a single phase parameter, i.e., gating properties of just one afferent sensory signal was sufficient to reproduce all coordination patterns seen in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akay, T., Bässler, U., Gerharz, P., Büschges, A. (2001). The Role of Sensory Signals From the Insect Coxa-Trochanteral Joint in Controlling Motor Activity of the Femur-Tibia Joint. The American Physiological Society

  • Akay, T., Haehn, S., Schmitz, J., & Büschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping. Journal of Neurophysiology, 96, 3532–3537.

    Article  Google Scholar 

  • Akay, T., Ludwar, B., Goritz, M. L., Schmitz, J., & Büschges, A. (2007). Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. Journal of Neuroscience, 27, 3285–3294.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, W. J. P. (1975). Leg coordination during walking in the crab, Uca pugnax. Journal of Comparative Physiology, 96, 237–256.

    Article  Google Scholar 

  • Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking movements. Multisensory control of a locomotor program. Brain Research Reviews, 27, 65–68.

    Article  PubMed  Google Scholar 

  • Borgmann, A., Scharstein, H., & Büschges, A. (2007). Intersegmental coordination: Influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98, 1685–1696.

    Article  PubMed  Google Scholar 

  • Borgmann, A., Hooper, S. L., & Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. Journal of Neuroscience, 29, 2972–2983.

    Article  CAS  PubMed  Google Scholar 

  • Bowerman, R. F. (1977). The control of arthropod walking. Comparative Biochemical and Phvsiology, 56A, 231–247.

    Article  Google Scholar 

  • Bucher, D., Akay, T., DiCaprio, R. A., & Büschges, A. (2003). Interjoint coordination in the stick insect leg-control system: the role of positional signaling. Journal of Neurophysiology, 89, 1245–1255.

    Article  PubMed  Google Scholar 

  • Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271.

    Article  PubMed  Google Scholar 

  • Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. Journal of Neurophysiology, 93, 1127–1135.

    Article  PubMed  Google Scholar 

  • Büschges, A., Kudwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to the rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 19, 1856–1862.

    Article  PubMed  Google Scholar 

  • Cattaert, D., & Le Ray, D. (2001). Adaptive motor control in crayfish. Progress in Neurobiology, 63, 199–240.

    Article  CAS  PubMed  Google Scholar 

  • Cattaert, D., El Manira, A., Marchand, A., & Clarac, F. (1990). Central control of the sensory afferent terminals from a leg chordotonal organ in crayfish in vitro preparation. Neuroscience Letters, 108, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Chasserat, C., & Clarac, F. (1983). Quantitative analysis of walking in a decapod crustacean, the rock lobster Jasus lalandii. II. Spatial and temporal regulation of stepping in driven walking. Journal of Experimental Biology, 107, 219–243.

    Google Scholar 

  • Chrachri, A., & Clarac, F. (1989). Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish, Procambarus clarkii. Journal of Neurophysiology, 62, 1237–1250.

    CAS  PubMed  Google Scholar 

  • Clarac, F. (1982). Decapod crustacean leg coordination during walking. In C. F. Herreid & C. R. Fourtner (Eds.), Locomotion and energetics in arthropods (pp. 31–71). New York: Plenum Press.

    Google Scholar 

  • Clarac, F., & Barnes, W. J. P. (1985). Peripheral influences on the coordination of the legs during walking in decapod crustaceans. In coordination of motor behaviour. In Soc. exp. Biol. Seminar Series 24 (pp. 249–269). Cambridge: Cambridge University Press.

    Google Scholar 

  • Clarac, F., Wales, W., & Laverack, M. S. (1971). Stress detection at the autotomy plane in the decapod crustacea II. The function of receptors associated with the cuticle of the basi-ischiopodite. Zeitschrift für vergleichende Physiologie, 73, 383–407.

    Article  Google Scholar 

  • Clarac, F., Cattaert, D., & Le Ray, D. (2000). Central control components of a ‘simple’ stretch reflex. Trends in Neuroscience, 23, 199–208.

    Article  CAS  Google Scholar 

  • Collins, J., & Richmond, S. (1994). Hard–wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71, 375–385.

    Article  Google Scholar 

  • Collins, J., & Stewart, I. (1992). Hexapodal gaits and coupled nonlinear oscillator models. Biological Cybernetics, 68, 287–298.

    Article  Google Scholar 

  • Cruse, H. (1985). Which parameters control the leg movement of a walking insect?: I. Velocity control during the stance phase. Journal of Experimental Biology, 116, 343–355.

    Google Scholar 

  • Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods. TINS, 1(13), 15–21.

    Google Scholar 

  • Cruse, H., & Müller, U. (1986). Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349–369.

    Google Scholar 

  • Cruse, H., Dürr, V., Schilling, M., & Schmitz, J. (2009). Principles of insect locomotion. In P. Arena & L. Patanè (Eds.), Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots (pp. 1–57). Berlin: Springer.

    Google Scholar 

  • Daun, S., Rybak, I. A., & Rubin, J. (2009). The response of a halfcenter oscillator to external drive depends on the intrinsic dynamics of its components: a mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Daun–Gruhn, S. (2011). A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0254-3.

    Google Scholar 

  • Daun-Gruhn, S., & Toth, T. I. (2011). An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0300-1.

    Google Scholar 

  • Dürr, V., Schmitz, J., & Cruse, H. (2004). Behavior-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure and Development, 33, 237–250.

    Article  PubMed  Google Scholar 

  • Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33, 287–300.

    Article  PubMed  Google Scholar 

  • Elson, R. (1996). Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-Leg nerves and possible homologies with insects. Journal of Comparative Neurology, 365, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Elson, R. C., Sillar, K. T., & Bush, B. M. H. (1992). Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system. Journal of Neurophysiology, 67, 530–546.

    CAS  PubMed  Google Scholar 

  • Grabowska, M. J., Godlewska, E., Schmidt, J., & Daun-Gruhn, S. (2012). Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking adult stick insects. The Journal of Experimental Biology, 215, 4255–4266.

    Article  PubMed  Google Scholar 

  • Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31–140.

    Article  Google Scholar 

  • Grillner, S., Markram, H., De Schutter, E., Silberberg, G., & LeBeau, F. E. N. (2005). Microcircuits in action—from CPGs to neocortex. Trends in Neurosciences, 28, 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Hess, D., & Büschges, A. (1999). Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Journal of Neurophysiologly, 81, 1856–1865.

    CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamom, M., & Clarac, F. (1995). Locomotor patterns in freely moving crayfish (Procambarus clarkii). The Journal of Experimental Biology, 198, 683–700.

    Google Scholar 

  • Klärner, D., & Barnes, W. J. P. (1986). The cuticular stress detector (CSD2) of the crayfish. II. Activity during walking and influences on the leg coordination. The Journal of Experimental Biology, 122, 161–175.

    Google Scholar 

  • Klärner, D., & Barth, F. G. (1986). The cuticular stress detector (CSD2) of the crayfish I physiological properties. The Journal of Experimental Biology, 122, 149–159.

    Google Scholar 

  • Kopell, N., Ermentrout, G. B., & Williams, T. L. (1991). On chains of oscillators forced at one end. SIAM Journal of Applied Mathematics, 51, 1397–1417.

    Article  Google Scholar 

  • Libersat, F., Zill, S., & Clarac, F. (1987). Single-unit responses and reflex effects of force sensitive mechanoreceptors of the dactyl of the crab. Journal of Neurophysiology, 57, 1601–1617.

    CAS  PubMed  Google Scholar 

  • Ludwar, B. C., Göritz, M. L., & Schmidt, J. (2005). Intersegmental coordination of walking movements in stick insects. Journal of Neurophysiology, 93, 1255–1265.

    Article  PubMed  Google Scholar 

  • MacMillan, D. L. (1975). A physiological analysis of walking in the American Lobster (Homarus americanus). Philosophical Transactions of the Royal Society B, 270, 1–59.

    Article  CAS  Google Scholar 

  • Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56, 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Müller, U., & Cruse, H. (1991). The contralateral coordination of walking legs in the crayfish Astacus leptodactylus. I. Experimental results. Biologicval Cybernetics, 64, 429–436.

    Article  Google Scholar 

  • Parrack, D.W. (1964). Stepping sequences in the crayfish. PhD. Thesis, University of Illinois.

  • Pearson, K. G. (2000). Neural adaptation in the generation of rhythmic behavior. Annual Reviews in Physiology, 62, 723–753.

    Article  CAS  Google Scholar 

  • Ritzmann, R. E., & Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in Neurobiology, 17, 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Ross, R. B., and Belanger, J. H. (2013). Passive Mechanical Properties of Crustacean Walking Legs. Poster, Sfn, Annual meeting, San Diego

  • Sillar, K. T., & Skorupski, P. (1986). Central input to primary afferent neurons in the crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. Journal of Neurophysiology, 55(4), 678–688.

    CAS  PubMed  Google Scholar 

  • Sillar, K. T., Skorupski, P., Elson, R. C., & Bush, B. M. H. (1986). Two identified afferent neurones entrain a central locomotor rhythm generator. Nature, 323, 440–443.

    Article  Google Scholar 

  • Sillar, I. K., Clarac, F., & Busch, B. M. H. (1987). Intersegmental coordination of central neural oscillators for rhythmic movements of the walking legs in crayfish, Pacifastacus leniusculus. Journal of Experimental Biology, 131, 245–264.

    Google Scholar 

  • Skinner, K. (1985). The structure of the fourth abdominal ganglion of the crayfish, Procarnbnrus clarhzi (Girard). I. Tracts in the ganglionic core. Journal of Comparative Neurology, 234, 168–181.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, F., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.

    Article  CAS  PubMed  Google Scholar 

  • Toth, T.I., Grabowska, M., Rosjat, N., Hellekes, K., Borgmann, A., Daun-Gruhn, S. (2015). Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves. Biological Cybernetics. doi:10.1007/s00422-015-0647-5

  • Von Twickel, A., Büschges, A., & Parsemann, F. (2011). Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller. Biological Cybernetics, 104, 95–119.

    Article  Google Scholar 

  • Westmark, S., Oliveira, E. E., & Schmidt, J. (2009). Pharmacological analysis of tonic activity in motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. M. (1966). Insect walking. Annual Review of Entomol, 11, 103–122.

    Article  CAS  Google Scholar 

  • Zill, S., Schmitz, J., & Büschges, A. (2004). Load sensing and control of posture and locomotion. Arthropod Structure Development, 33, 273–286.

    Article  PubMed  Google Scholar 

  • Zill, S. N., Keller, B. R., & Duke, E. R. (2009). Sensory signals of unloading in One Leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. Journal of Neurophysiology, 101, 2297–2304.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. A. Büschges for useful discussions in the course of the work. The work was supported by DFG Grants to SDG: DA1182/1-1, GR3690/2-1 and GR3690/4-1.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Daun-Gruhn.

Additional information

Action Editor: J. Rinzel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowska, M., Toth, T.I., Smarandache-Wellmann, C. et al. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans. J Comput Neurosci 38, 601–616 (2015). https://doi.org/10.1007/s10827-015-0559-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0559-3

Keywords

Navigation