Skip to main content
Log in

Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions’ entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TCS:

Time course of secretion

EPC:

Endplate current

EMG:

Exponentially modified Gaussian

[Са2+]out :

Extracellular calcium concentration

[Mg2+]out :

Extracellular magnesium concentration

4-AP:

4-aminopyridine

QU:

Quasi-uniform process

References

  • Atluri, P. P., & Regehr, W. G. (1998). Delayed release of neurotransmitter from cerebellar granule cells. Journal of Neuroscience, 18(20), 8214–8227.

    CAS  PubMed  Google Scholar 

  • Augustine, G. J. (2003). How does calcium trigger neurotransmitter release? Current Opinion in Neurobiology, 11(3), 320–326.

    Article  Google Scholar 

  • Barrett, E. F., & Stevens, C. F. (1972). The kinetics of transmitter release at the frog neuromuscular junction. Journal of Physiology, 227, 691–708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett, M. R., & Kearns, J. L. (2000). Statistics of transmitter release at nerve terminals. Progress in Neurobiology, 60(6), 545–606.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M. R., Gibson, W. G., & Robinson, J. (1997). Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates. Biophysical Journal, 73(4), 1815–1829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bukharaeva, E., Samigullin, D., Nikolsky, E., & Vyskocil, F. (2002). Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. Journal of Physiology, 538, 837–848.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bukharaeva, E. A., Samigullin, D. V., Nikolsky, E. E., & Magazanik, L. G. (2007). Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. Journal of Neurochemistry, 100, 939–949.

    Article  CAS  PubMed  Google Scholar 

  • Bukсharaeva, Е., Kim, K., Moravec, J., Nikolsky, E., & Vyskočil, F. (1999). Noradrenaline synchronizes evoked quantal release at frog neuromuscular junctions. Journal of Physiology, 517, 879–888.

    Article  Google Scholar 

  • Chang, C. Y., & Mennerick, S. (2010). Dynamic modulation of phasic and asynchronous glutamate release in hippocampal synapses. Journal of Neurophysiology, 103, 392–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, C., & Regher, W. (1999). Contributions of residual calcium to fast synaptic transmission. Journal of Neuroscience, 19, 6257–6266.

    CAS  PubMed  Google Scholar 

  • Chung, C., & Raingo, J. (2013). Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission. Journal of Neurochemistry, 126(2), 146–154. doi:10.1111/jnc.12245.

    Article  CAS  PubMed  Google Scholar 

  • Delaney, K. R., & Tank, D. W. (1994). A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. Journal of Neuroscience, 14(10), 5885–5902.

    CAS  PubMed  Google Scholar 

  • Delcour, A. H., Lipscombe, D., & Tsien, R. W. (1993). Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. Journal of Neuroscience, 13(1), 181–194.

    CAS  PubMed  Google Scholar 

  • Dodge, F., & Rahamimoff, R. (1967). Cooperative action of calcium ions in transmitter release at the neuromuscular junctions. Journal of Physiology, 193, 419–432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudel, J. (2009). Depolarization amplitude and Ca2+-inflow control the time course of quantal releases at murine motor nerve terminals. Europen Journal of Neuroscience, 30(7), 1219–1226. doi:10.1111/j.1460-9568.2009.06915.x.

    Article  Google Scholar 

  • Dudel, J., Parnas, H., & Parnas, I. (1991). Evoked phasic release in frog nerve terminals obtained after block of Ca2+ entry by Cd2+. Pflügers Archiv, 419(2), 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Feldchyshyn, M. J., & Wang, L. Y. (2007). Activity-dependent changes in temporal components of neurotransmission at the juvenile mouse calyx of Held synapse. Journal of Physiology, 581, 581–602.

    Article  Google Scholar 

  • Fesce, R. (1999). The kinetics of nerve-evoked quantal secretion. Philosophical Transactions of the Royal Society, B: Biological Sciences, 354, 319–329.

    Article  PubMed Central  CAS  Google Scholar 

  • Gainulov, R., Bukharaeva, E., & Nikolskii, E. (2002). A method for assessing the kinetics of evoked secretion of transmitter quanta determining the generation of multiquantum endplate currents. Neuroscience Behavioral Physiology, 32(6), 613–616.

    Article  PubMed  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Gilmanov, I., Samigullin, D., Vyskocil, F., Nikolsky, E., & Bukharaeva, E. (2008). Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. Journal of Computational Neuroscience, 25, 296–307.

    Article  PubMed  Google Scholar 

  • Goda, Y., & Stevens, C. F. (1994). Two components of transmitter release at a central synapse. Proceedings of the National Academy of Sciences, 91, 12942–12946.

    Article  CAS  Google Scholar 

  • Hagler, D. J., & Goda, Y. (2001). Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. Journal of Neurophysiology, 85(6), 2324–2334.

    CAS  PubMed  Google Scholar 

  • Hefft, S., & Jonas, P. (2005). Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nature Neuroscience, 8(10), 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  • Kaeser, P. S., & Regehr, W. G. (2014). Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annual Review of Physiology, 2014(76), 333–363.

    Article  Google Scholar 

  • Katz, B. (1996). Neural transmitter release: from quantal secretion to exocytosis and beyond. The Fenn Lecture. Journal of Neurocytology, 25, 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Katz, B., & Miledi, R. (1965). The measurement of synaptic delay and the time course of acetylcholine release at the neuromuscular junction. Proceedings of the Royal Society B: Biological Sciences, 161, 483–495.

    Article  CAS  Google Scholar 

  • Khuzakhmetova, V., Samigullin, D., Nurullin, L., Vyskocil, F., Nikolsky, E., & Bukharaeva, E. (2014). Kinetics of neurotransmitter release in neuromuscular synapses of newborn and adult rats. International Journal of Developmental Neuroscience, 34, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J.-W., & Farber, S. (2002). Modulation of synaptic delay during synaptic plasticity. Trends in Neurosciences, 25, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Lu, T., & Trussel, L. O. (2000). Inhibitory transmission mediated by asynchronous transmitter release. Neuron, 26(3), 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Matzke, D., Dolan, C. V., Logan, G. D., Brown, S. D., & Wagenmakers, E. J. (2013). Bayesian parametric estimation of stop-signal reaction time distributions. Journal of Experimental Psychology: General, 142(4), 1047–1073. doi:10.3389/fpsyg.2013.00918.

    Article  Google Scholar 

  • Minneci, F., Kanichay, R. T., & Silver, R. A. (2012). Estimation of the time course of neurotransmitter release at central synapses from the first latency of postsynaptic currents. Journal of Neuroscience Methods, 205(1), 49–64. doi:10.1016/j.jneumeth.2011.12.015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller, D. (1986). Potentiation by 4-aminopyridine of quantal acetylcholine release at the torpedo nerve-electroplaque junction. Journal of Physiology, 379, 479–493.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neff, R. A., Conroy, W. G., Schoellerman, J. D., & Berg, D. K. (2009). Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins. Journal of Neuroscience, 29(50), 15770–15779.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neher, E., & Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron, 59, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Nikolsky, E. E., Vyskocil, F., Bukharaeva, E. A., Samigullin, D. V., & Magazanik, L. G. (2004). Cholinergic regulation of the evoked quantal release at frog neuromuscular junction. Journal of Physiology, 560, 77–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otsu, Y., Shahrezaei, V., Li, B., Raymond, L., Delaney, K., & Murphy, T. (2004). Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. Journal of Neuroscience, 24, 420–433.

    Article  CAS  PubMed  Google Scholar 

  • Pan, B., & Zucker, R. S. (2009). A general model of synaptic transmission and short-term plasticity. Neuron, 62(4), 539–554. doi:10.1016/j.neuron.2009.03.025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pang, Z. P., & Sudhof, T. C. (2010). Cell biology of Ca2 + -triggered exocytosis. Current Opinion in Cell Biology, 22, 496–505. doi:10.1016/j.ceb.2010.05.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parnas, I., & Parnas, H. (2010). Control of neurotransmitter release: from Ca2+ to voltage dependent G-protein coupled receptors. Pflugers Archiv / Europen Journal Physiology, 460, 975–990.

    Article  CAS  Google Scholar 

  • Plummer, M. (2012). Rjags: Bayesian graphical models using MCMC. R packageversion 3-9. http://CRAN.R-project.org/package=rjags.

  • Rahamimoff, R., & Yaari, Y. (1973). Delayed release of transmitter at the frog neuromuscular junction. Journal of Physiology, 228, 241–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabatini, B., & Regehr, W. (1999). Timing of synaptic transmission. Annual Review of Physiology, 61, 521–542.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S., Chen, W., Vyleta, N., Williams, C., Lee, C.-H., Phillips, C., & Andresen, M. (2012). Calcium regulation of spontaneous and asynchronous neurotransmitter release. Cell Calcium, 52, 226–233. doi:10.1016/j.ceca.2012.06.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevens, C. F. (1968). Synaptic physiology. Proceedings of the IEEE, 56, 916–930.

    Article  Google Scholar 

  • Su, Y-S., & Yajima, M. (2012). R2jags: a package for running jags from R. R package version 0.03–08. http://CRAN.R-project.org/package=R2jags.

  • Tarr, T. B., Dittrich, M., & Meriney, S. D. (2013). Are unreliable release mechanisms conserved from NMJ to CNS? Trends in Neuroscience, 36, 14–22. doi:10.1016/j.tins.2012.09.009.

    Article  CAS  Google Scholar 

  • Van der Kloot, W. (1988a). Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction. Journal of Physiology, 402, 595–603.

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Kloot, W. (1988b). The kinetics of quantal releases during end-plate currents at the frog neuromuscular junction. Journal of Physiology, 402, 605–626.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vyshedskiy, A., & Lin, J. W. (2000). Presynaptic Ca(2+) influx at the inhibitor of the crayfish neuromuscular junction: a photometric study at a high time resolution. Journal of Neurophysiology, 83(1), 552–562.

    CAS  PubMed  Google Scholar 

  • Wen, H., Hubbard, J. M., Rakela, B., Linhoff, M. W., Mandel, G., & Brehm, P. (2013). Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources. Elife, 2, e01206. doi:10.7554/eLife.01206.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Russian Government’s Program for Competitive Growth of Kazan Federal University and was also supported by a grant of President of Russian Federation “Leading Scientific School” and a grants from the Russian Foundation for Basic Research (13-04-00886 for DS; 14-04-00987 for IK and EN, 14-04-00790 for AS, 15-04-02983 for VKh and EB).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellya Bukharaeva.

Additional information

Action Editor: Catherine E. Carr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saveliev, A., Khuzakhmetova, V., Samigullin, D. et al. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction. J Comput Neurosci 39, 119–129 (2015). https://doi.org/10.1007/s10827-015-0567-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0567-3

Keywords

Navigation