Skip to main content
Log in

Formation and disruption of tonotopy in a large-scale model of the auditory cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich’s spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The scalingFactor is equal to 20 and corresponds to scaled density of synapses in comparison to the real cortex and is adopted from (Izhikevich and Edelman 2008).

  2. Licenced under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public Licence. The code is at https://sites.google.com/site/susnoimac, last accessed: July 6, 2015.

  3. Processor: Intel(R) Core(TM) i7 930 @ 2.80 GHz, RAM: 16 GB, OS: Windows 7.

  4. The minute-long window contains sixty values of firing rate, one for each second in the window. The mean and standard deviation are computed from these sixty values.

  5. We focused only on desynchronised states and nearly desynchronised states in this analysis in order to have the largest oscillations in the gamma band.

  6. Input neurons (i.e., neurons from layer L4) are not accounted because they are trivially tonotopic and would skew the results by enforcing that every network has a large quantity of perfectly tonotopic neurons.

  7. This means intensity corresponding to the probability 0.5, i.e., each neuron in the input layer has, in each time step, a probability 0.5 to be externally stimulated, as defined in Section 2.2.

  8. Note that computation of a single 12 h development of a 50k network, along with the measurement of tonotopy, takes circa 10 days; we therefore could not compute more repetitions with different seeds.

  9. The reason for using Kruskal-Wallis ANOVA (instead of standard ANOVA) is the fact that it does not require normally distributed data.

References

  • Arieli, A, Shoham, D, Hildesheim, R, & Grinvald, A (1995). Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. Journal of Neurophysiology, 73(5), 2072–2093.

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay, S, Shamma, SA, & Kanold, PO (2010). Dichotomy of functional organization in the mouse auditory cortex. Nature Neuroscience, 13(3), 361–368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbour, B, Brunel, N, Hakim, V, & Nadal, JP (2007). What can we learn from synaptic weight distributions? Trends in Neuroscience, 30(12), 622–629. doi:10.1016/j.tins.2007.09.005. http://www.ncbi.nlm.nih.gov/pubmed/17983670.

    Article  CAS  Google Scholar 

  • Barbour, DL, & Callaway, EM (2008). Excitatory local connections of superficial neurons in rat auditory cortex. The Journal of Neuroscience, 28(44), 11,174–11,185.

    Article  CAS  Google Scholar 

  • Bartos, M, Vida, I, Frotscher, M, Meyer, A, Monyer, H, Geiger, JRP, & Jonas, P (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13,222–13,227.

    Article  CAS  Google Scholar 

  • Beierlein, M, Gibson, JR, & Connors, BW (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90(5), 2987–3000.

    Article  PubMed  Google Scholar 

  • Binzegger, T, Douglas, RJ, & Martin, KAC (2004). A quantitative map of the circuit of cat primary visual cortex. The Journal of Neuroscience, 24(39), 8441–8453.

    Article  CAS  PubMed  Google Scholar 

  • Bollimunta, A, Mo, J, Schroeder, CE, & Ding, M (2011). Neuronal mechanisms and attentional modulation of corticothalamic α oscillations. The Journal of Neuroscience, 24(39), 8441–8453.

    Google Scholar 

  • Buonomano, DV, & Maass, W (2009). State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10(2), 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki, G, & Wang, XJ (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35, 203–225.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cardin, JA, Carlén, M, Meletis, K, Knoblich, U, Zhang, F, Deisseroth, K, Tsai, LH, & Moore, CI (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459 (7247), 663–667. doi:10.1038/nature08002. http://www.ncbi.nlm.nih.gov/pubmed/19396156.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang, EF, & Merzenich, MM (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.

    Article  CAS  PubMed  Google Scholar 

  • Christophe, E, Roebuck, A, Staiger, JF, Lavery, DJ, Charpak, S, & Audinat, E (2002). Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. Journal of Neurophysiology, 88(3), 1318–1327. http://www.ncbi.nlm.nih.gov/pubmed/12205153.

    CAS  PubMed  Google Scholar 

  • Chrostowski, M, Yang, L, Wilson, HR, Bruce, IC, & Becker, S (2011). Can homeostatic plasticity in deafferented primary auditory cortex lead to travelling waves of excitation? Journal of Computational Neuroscience, 30(2), 279–299.

    Article  PubMed  Google Scholar 

  • Clement, EA, Richard, A, Thwaites, M, Ailon, J, Peters, S, & Dickson, CT (2008). Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS One, 3(4), e2004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cottam, JC, Smith, SL, & Häusser, M (2013). Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. The Journal of Neuroscience, 33(50), 19567–19578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruikshank, SJ, Rose, HJ, & Metherate, R (2002). Auditory thalamocortical synaptic transmission in vitro. Journal of Neurophysiology, 87(1), 361–384.

    PubMed  Google Scholar 

  • de Pinho, M, & Roque-da Silva, AC (1999). A realistic computational model of formation and variability of tonotopic maps in the auditory cortex. Neurocomputing, 26, 355–359.

    Article  Google Scholar 

  • de Pinho, M, Mazza, M, & Roque, AC (2006). A computational model of the primary auditory cortex exhibiting plasticity in the frequency representation. Neurocomputing, 70(1), 3–8.

    Article  Google Scholar 

  • de la Rocha, J, Marchetti, C, Schiff, M, & Reyes, AD (2008). Linking the response properties of cells in auditory cortex with network architecture: Cotuning versus lateral inhibition. The Journal of Neuroscience, 28(37), 9151–9163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Villers-Sidani, E, Chang, EF, Bao, S, & Merzenich, MM (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of Neuroscience, 27(1), 180–189.

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe, J, Alonso-Nanclares, L, & Arellano, JI (2002). Microstructure of the neocortex: comparative aspects. Journal of Neurocytology, 31(3–5), 299–316.

    Article  PubMed  Google Scholar 

  • Feldmeyer, D, Egger, V, Lubke, J, & Sakmann, B (1999). Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single barrel of developing rat somatosensory cortex. Journal of Physiology, 521 Pt 1, 169–190. http://www.ncbi.nlm.nih.gov/pubmed/10562343.

    Article  CAS  PubMed  Google Scholar 

  • Froemke, RC, Merzenich, MM, & Schreiner, CE (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425–429.

    Article  CAS  PubMed  Google Scholar 

  • Froemke, RC, & Jones, BJ (2011). Development of auditory cortical synaptic receptive fields. Neuroscience & Biobehavioral Reviews, 35(10), 2105–2113.

    Article  Google Scholar 

  • Galarreta, M, & Hestrin, S (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402(6757), 72–75.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini, S, Migliore, M, & Magee, JC (2004). On the initiation and propagation of dendritic spikes in Ca1 pyramidal neurons. The Journal of Neuroscience, 24(49), 11,046–11,056.

    Article  CAS  Google Scholar 

  • Grossman, RL, Greenway, M, Heath, AP, Powell, R, Suarez, R, Wells, W, White, KP, Atkinson, M, Klampanos, I, Alvarez, H, Harvey, C, & Mambretti, J. (2012). The design of a community science cloud: The open science data cloud perspective. https://www.opensciencedatacloud.org/.

  • Happel, MF, Jeschke, M, & Ohl, FW (2010). Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. The Journal of Neuroscience, 30(33), 11,114–11,127.

    Article  CAS  Google Scholar 

  • Haeusler, S, Schuch, K, & Maass, W (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology Paris, 103(1-2), 73–87.

    Article  Google Scholar 

  • Harris, KD, & Shepherd, GM (2015). The neocortical circuit: themes and variations. Nature neuroscience, 18(2), 170–181.

    Article  CAS  PubMed  Google Scholar 

  • Hestrin, S, & Armstrong, WE (1996). Morphology and physiology of cortical neurons in layer I. The Journal of Neuroscience, 16(17), 5290–5300.

    CAS  PubMed  Google Scholar 

  • Hodgkin, AL, & Huxley, AF (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmgren, C, Harkany, T, Svennenfors, B, & Zilberter, Y (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551(Pt 1), 139–53. doi:10.1113/jphysiol.2003.044784. http://www.ncbi.nlm.nih.gov/pubmed/12813147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, CL, & Winer, JA (2000). Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology, 427(2), 302–331.

    Article  CAS  PubMed  Google Scholar 

  • Huxter, J, Burgess, N, & O’Keefe, J (2003). Independent rate and temporal coding in hippocampal pyramidal cells. Nature, 425(6960), 828–832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Insanally, MN, Albanna, BF, & Bao, S (2010). Pulsed noise experience disrupts complex sound representations. Journal of Neurophysiology, 103(5), 2611.

    Article  PubMed Central  PubMed  Google Scholar 

  • Issa, JB, Haeffele, BD, Agarwal, A, Bergles, DE, Young, ED, & Yue, DT (2014). Multiscale optical Ca 2+ imaging of tonal organization in mouse auditory cortex. Neuron, 83(4), 944– 959.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iurilli, G, Ghezzi, D, Olcese, U, Lassi, G, Nazzaro, C, Tonini, R, Tucci, V, Benfenati, F, & Medini, P (2012). Sound-driven synaptic inhibition in primary visual cortex. Neuron, 73(4), 814–828.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izhikevich, EM (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, EM (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.

    Article  PubMed  Google Scholar 

  • Izhikevich, EM (2006). Polychronization: Computation with spikes. Neural Computation, 18(2), 245–282.

    Article  PubMed  Google Scholar 

  • Izhikevich, EM (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17(10), 2443–2452.

    Article  PubMed  Google Scholar 

  • Izhikevich, EM, & Edelman, GM (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences, 105(9), 3593–3598.

    Article  CAS  Google Scholar 

  • Kawaguchi, Y (1995). Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. The Journal of Neuroscience, 15(4), 2638–2655.

    CAS  PubMed  Google Scholar 

  • Kawaguchi, Y, & Kubota, Y (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H, & Bao, S (2009). Selective increase in representations of sounds repeated at an ethological rate. The Journal of Neuroscience, 29(16), 5163–5169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura, A, Donishi, T, Sakoda, T, Hazama, M, & Tamai, Y (2003). Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience, 117(4), 1003–1016.

    Article  CAS  PubMed  Google Scholar 

  • Knight, BW (1972). Dynamics of encoding in a population of neurons. The Journal of General Physiology, 59 (6), 734–766.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotak, VC, Fujisawa, S, Lee, FA, Karthikeyan, O, Aoki, C, & Sanes, DH (2005). Hearing loss raises excitability in the auditory cortex. The Journal of Neuroscience, 25(15), 3908–3918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kral, A, Tillein, J, Heid, S, Klinke, R, & Hartmann, R (2006). Cochlear implants: cortical plasticity in congenital deprivation. Progress in Brain Research, 157, 283–313.

    Article  PubMed  Google Scholar 

  • Lapicque, L (1907). Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. Journal de Physiologie et de Pathologie Générale, 9(1), 620–635.

    Google Scholar 

  • Larson, E, Billimoria, CP, & Sen, K (2009). A biologically plausible computational model for auditory object recognition. Journal of Neurophysiology, 101(1), 323–331.

    Article  PubMed Central  PubMed  Google Scholar 

  • Larson, E, Perrone, BP, Sen, K, & Billimoria, CP (2010). A robust and biologically plausible spike pattern recognition network. The Journal of Neuroscience, 30(46), 15,566–15,572.

    Article  CAS  Google Scholar 

  • Lee, CC, & Winer, JA (2008). Connections of cat auditory cortex: I. Thalamocortical system. Journal of Comparative Neurology, 507(6), 1879–1900.

    Article  PubMed Central  PubMed  Google Scholar 

  • Letzkus, JJ, Wolff, SBE, Meyer, EMM, Tovote, P, Courtin, J, Herry, C, & Luethi, A (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480(7377), 331–335.

    Article  CAS  PubMed  Google Scholar 

  • Levy, RB, & Reyes, AD (2012). Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. Journal of Neuroscience, 32(16), 5609–5619.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, LY, Ji, XY, Liang, FX, Li, YT, Xiao, ZJ, Tao, HZW, & Zhang, LI (2014a). A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. Journal of Neuroscience, 34(41), 13670–13683.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li, LY, Xiong, XR, Ibrahim, LA, Yan, W, Tao, H, & Zhang, LI (2014b). Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex. Cerebral Cortex. Epub ahead of print.

  • Liebe, S, Hoerzer, GM, Logothetis, NK, & Rainer, G (2012). Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 15(3), 456–462.

    Article  CAS  PubMed  Google Scholar 

  • Markram, H, Lübke, J, Frotscher, M, & Sakmann, B (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Markram, H, Toledo-Rodriguez, M, Wang, Y, Gupta, A, Silberberg, G, & Wu, C (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, M, & Nishimura, T (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1), 3–30.

    Article  Google Scholar 

  • Moore, AK, & Wehr, M (2013). Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. The Journal of Neuroscience, 33(34), 13,713–13,723.

    Article  CAS  Google Scholar 

  • Muresan, RC, & Savin, C (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of Neurophysiology, 97(3), 1911–1930.

    Article  PubMed  Google Scholar 

  • Nahmani, M, & Turrigiano, GG (2014). Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period. The Journal of Neuroscience, 34(7), 2571–2582.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelken, I (2014). Stimulus-specific adaptation and deviance detection in the auditory system: Experiments and models. Biological Cybernetics, 1–9. doi:10.1007/s00422-014-0585-7.

  • Nordlie, E, Gewaltig, MO, & Plesser, HE (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5(8), 456.

    Article  CAS  Google Scholar 

  • Nunez, PL, & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. USA: Oxford University Press.

  • O’Keefe, J, & Recce, ML (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330.

    Article  PubMed  Google Scholar 

  • Oswald, AMM, Schiff, ML, & Reyes, AD (2006). Synaptic mechanisms underlying auditory processing. Current Opinion in Neurobiology, 16(4), 371–376.

    Article  CAS  PubMed  Google Scholar 

  • Ouda, L, Druga, R, & Syka, J (2011). Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Structure and Function, 217(1), 19–36.

    Article  PubMed  CAS  Google Scholar 

  • Phoka, E, Wildie, M, Schultz, SR, & Barahona, M (2012). Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model. Journal of Computational Neuroscience, 33(2), 323–339.

    Article  PubMed  Google Scholar 

  • Popelová, M. (2013). Software tool for modelling coding and processing of information in auditory cortex of mice. Master Thesis, Charles University in Prague, Faculty of Mathematics and Physics. http://www.marketa.najevisti.info/dokumenty/master_thesis.pdf.

  • Raghavachari, S, Lisman, JE, Tully, M, Madsen, JR, Bromfield, EB, & Kahana, MJ (2006). Theta oscillations in human cortex during a working-memory task: Evidence for local generators. Journal of Neurophysiololgy, 95(3), 1630–1638. doi:10.1152/jn.00409.2005. http://www.ncbi.nlm.nih.gov/pubmed/16207788.

    Article  CAS  Google Scholar 

  • Reale, RA, Breugge, JF, & Chan, JC (1987). Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Brain Research, 431(2), 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, RJ, Blundon, JA, Bayazitov, IT, & Zakharenko, SS (2009). Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. Journal of Neuroscience, 29(20), 6406–17. doi:10.1523/JNEUROSCI.0258-09.2009 10.1523/JNEUROSCI.0258-09.2009. http://www.ncbi.nlm.nih.gov/pubmed/19458212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanski, LM, & LeDoux, JE (1993). Organization of rodent auditory cortex: anterograde transport of PHA-L from MGv to temporal neocortex. Cerebral Cortex, 3(6), 499–514.

    Article  CAS  PubMed  Google Scholar 

  • Rothschild, G, Nelken, I, & Mizrahi, A (2010). Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience, 13(3), 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Sakata, S, & Harris, KD (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404–418.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakata, S, & Harris, KD (2012). Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Frontiers in Neural Circuits, 6(109). doi:10.3389/fncir.2012.00109.

  • Schreiner, CE, Read, HL, & Sutter, ML (2000). Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 23(1), 501–529.

    Article  CAS  PubMed  Google Scholar 

  • Schutter, ED. (2009). Computational modeling methods for neuroscientists. MIT Press.

  • Smith, P.H., & Populin, L.C. (2001). Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology, 436(4), 508–519.

  • Smith, PH, Uhlrich, DJ, Manning, KA, & Banks, MI (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. Journal of Comparative Neurology, 520 (1), 34–51. doi:10.1002/cne.22682. http://www.ncbi.nlm.nih.gov/pubmed/21618239.

  • Song, S, Miller, KD, & Abbott, LF (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926. doi:10.1038/78829. http://www.ncbi.nlm.nih.gov/pubmed/10966623.

    Article  CAS  PubMed  Google Scholar 

  • Song, S, Sjöström, PJ, Reigl, M, Nelson, S, & Chklovskii, DB (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), e68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stanton, SG, & Harrison, RV (2000). Projections from the medial geniculate body to primary auditory cortex in neonatally deafened cats. Journal of Comparative Neurology, 426, 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M, McCormick, DA, & Sejnowski, TJ (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.

    Article  CAS  PubMed  Google Scholar 

  • Stiebler, I, Neulist, R, Fichtel, I, & Ehret, G (1997). The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A, 181(6), 559–571.

    Article  CAS  Google Scholar 

  • Sun, YJ, Wu, GK, Liu, Bh, Li, P, Zhou, M, Xiao, Z, Tao, HW, & Zhang, LI (2010). Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature, 465(7300), 927–931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syka, J, Šuta, D, & Popelář, J (2005). Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs. Hearing research, 206(1), 177–184.

    Article  PubMed  Google Scholar 

  • Šuta, D, Kvašňák, E, Popelář, J, & Syka, J (2003). Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. Journal of neurophysiology, 90(6), 3794–3808.

    Article  PubMed  Google Scholar 

  • Šuta, D, Popelář, J, Kvašňák, E, & Syka, J (2007). Representation of species-specific vocalizations in the medial geniculate body of the guinea pig. Experimental brain research, 183(3), 377–388.

    Article  PubMed  Google Scholar 

  • Šuta, D, Popelář, J, Burianová, J, & Syka, J (2013). Cortical representation of species-specific vocalizations in Guinea pig. PloS one, 8(6), e65432.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Timofeev, I, Grenier, F, Bazhenov, M, Sejnowski, TJ, & Steriade, M (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12), 1185–1199.

    Article  CAS  PubMed  Google Scholar 

  • Traub, RD, Spruston, N, Soltesz, I, Konnerth, A, Whittington, MA, & Jefferys, GR (1998). Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Progress in Neurobiology, 55(6), 563–575.

    Article  CAS  PubMed  Google Scholar 

  • Wagatsuma, N, Potjans, TC, Diesmann, M, & Fukai, T (2011). Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model. Frontiers in Computational Neuroscience, 5(31), 1–15.

    Google Scholar 

  • Watson, C. (2012). The mouse nervous system. Academic Press.

  • Wendykier, P (2013). Parallel Colt. https://sites.google.com/site/piotrwendykier/software/parallelcolt.

  • Wendykier, P, & Nagy, JG (2010). Parallel colt: A high-performance Java library for scientific computing and image processing. ACM Transactions on Mathematical Software (TOMS), 37(3), 31.

    Article  Google Scholar 

  • Wilson, NR, Runyan, CA, Wang, FL, & Sur, M (2012). Division and subtraction by distinct cortical inhibitory networks in vivo. Nature, 488(7411), 343–348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winer, JA (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1), 1–8.

    Article  PubMed  Google Scholar 

  • Winer, JA, & Lee, CC (2007). The distributed auditory cortex. Hearing Research, 229(1-2), 3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu, GK, Arbuckle, R, Liu, Bh, Tao, HW, & Zhang, LI (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1), 132–143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu, GK, Tao, HW, & Zhang, LI (2011). From elementary synaptic circuits to information processing in primary auditory cortex. Neuroscience & Biobehavioral Reviews, 35(10), 2094– 2104.

    Article  Google Scholar 

  • Xu, S, Jiang, W, Poo, M, & Dan, Y (2012). Activity recall in a visual cortical ensemble. Nature Neuroscience, 15(3), 449–455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, H, Jeong, HY, Tremblay, R, & Rudy, B (2013). Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron, 77(1), 155–167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuste, R, & Denk, W (1995). Dendritic spines as basic functional units of neuronal integration. Nature, 375 (6533), 682–684.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, LI, Bao, S, & Merzenich, MM (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, LI, Bao, S, & Merzenich, MM (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences, 99(4), 2309–2314.

    Article  CAS  Google Scholar 

  • Zhou, X, Nagarajan, N, Mossop, BJ, & Merzenich, MM (2008). Influences of un-modulated acoustic inputs on functional maturation and critical-period plasticity of the primary auditory cortex. Neuroscience, 154(1), 390–396.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou, Y, Mesik, L, Sun, YJ, Liang, F, Xiao, Z, Tao, HW, & Zhang, LI (2012). Generation of spike latency tuning by thalamocortical circuits in auditory cortex. The Journal of Neuroscience, 32(29), 9969–9980.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zingg, B, Hintiryan, H, Gou, L, Song, MY, Bay, M, Bienkowski, M S, Foster, NN, Yamashita, S, Bowman, I, & Toga, AW (2014). Neural networks of the mouse neocortex. Cell, 156(5), 1096–1111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zucker, RS (1989). Short-term synaptic plasticity. Annual Review of Neuroscience, 12(1), 13–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Elisa Brann, Martin Popel and Felix Zhou for help with polishing the manuscript and The Bakala Foundation for financial support of the two first authors during their studies. This work was supported by the Grant Agency of the Czech Republic (P303/12/1347), by PRVOUK “P46 – Informatika”, and by Engineering and Physical Sciences Research Council (EP/F500394/1). This work made use of the Open Science Data Cloud (OSDC) which is an Open Cloud Consortium (OCC)-sponsored project (Grossman et al. 2012); which is a work supported in part by grants from Gordon and Betty Moore Foundation and the National Science Foundation and major contributions from OCC members like the University of Chicago.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markéta Tomková or Ondřej Novák.

Additional information

Action Editor: Erik De Schutter

Electronic supplementary material

Below is the link to the electronic supplementary material.

(6.05 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomková, M., Tomek, J., Novák, O. et al. Formation and disruption of tonotopy in a large-scale model of the auditory cortex. J Comput Neurosci 39, 131–153 (2015). https://doi.org/10.1007/s10827-015-0568-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0568-2

Keywords

Navigation