Skip to main content
Log in

Information filtering in resonant neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neuronal information transmission is fre- quency specific. In single cells, a band-pass like frequency preference can arise from the subthreshold dynamics of the membrane potential, shaped by properties of the cell’s membrane and its ionic channels. In these cases, a cell is termed resonant and its membrane impedance spectrum exhibits a peak at non-vanishing frequencies. Here, we show that this frequency selectivity of neuronal response amplitudes need not translate into a similar frequency selectivity of information transfer. In particular, neurons with resonant but linear subthreshold voltage dynamics (without threshold) do not show a resonance of information transfer at the level of subthreshold voltage; the corresponding coherence has low-pass characteristics. Interestingly, we find that when combined with nonlinearities, subthreshold resonances do shape the frequency dependence of coherence and the peak in the subthreshold impedance translates to a peak in the coherence function. In other words, the nonlinearity inherent to spike generation allows a subthreshold impedance resonance to shape a resonance of voltage-based information transfer. We demonstrate such nonlinearity-mediated band-pass filtering of information at frequencies close to the subthreshold impedance resonance in three different model systems: the resonate-and-fire model, the conductance-based Morris-Lecar model, and linear resonant dynamics combined with a simple static nonlinearity. In the spiking neuron models, the band-pass filtering is most pronounced for low firing rates and a high variability of interspike intervals, similar to the spiking statistics observed in vivo. We show that band-pass filtering is achieved by reducing information transfer over low-frequency components and, consequently, comes along with an overall reduction of information rate. Our work highlights the crucial role of nonlinearities for the frequency dependence of neuronal information transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alonso, A., & Llinas, R.R. (1989). Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer-II. Nature, 342, 175.

    Article  CAS  PubMed  Google Scholar 

  • Badel, L., Lefort, S., Brette, R., Petersen, C.C.H., Gerstner, W., & Richardson, M.J.E. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of Neurophysiology, 99, 656.

    Article  PubMed  Google Scholar 

  • Borst, A., & Theunissen, F. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947.

    Article  CAS  PubMed  Google Scholar 

  • Brunel, N., Hakim, V., & Richardson, M.J.E. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E, 67, 051,916.

    Article  Google Scholar 

  • Bussgang, J.J. (1952). Crosscorrelation functions of amplitudedistorted Gaussian signals. Research Lab. Electron.

  • Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929.

    Article  PubMed  Google Scholar 

  • Chacron, M.J., Doiron, B., Maler, L., Longtin, A., & Bastian, J. (2003). Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature, 423, 77.

    Article  CAS  PubMed  Google Scholar 

  • Droste, F., Schwalger, T., & Lindner, B. (2013). Interplay of two signals in a neuron with short-term synaptic plasticity. Frontiers in Computational Neuroscience, 7, 86.

    Article  PubMed Central  PubMed  Google Scholar 

  • Engel, T.A., Schimansky-Geier, L., Herz, A.V.M., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100, 1576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erchova, I., Kreck, G., Heinemann, U., & Herz, A. (2004). Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. Journal of Neurophysiology, 560(Pt 1), 89.

    CAS  Google Scholar 

  • Frigo, M., & Johnson, S.G. (2005). The design and implementation of FFTW3. Proceedings of the IEEE, 93(2), 216–231.

    Article  Google Scholar 

  • Gabbiani, F. (1996). Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. Network-Comp Neural, 7, 61.

    Article  Google Scholar 

  • Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., & Rossi, F. (2009). GNU scientific library reference manual-(v1. 12). Network Theory Ltd.

  • Gimbarzevsky, B., Miura, R.M., & Puil, E. (1984). Impedance profiles of peripheral and central neurons. Canadian Journal of Physiology and Pharmacology, 62(4), 460–462.

    Article  CAS  PubMed  Google Scholar 

  • Gloveli, T., Schmitz, D., Empson, R.M., & Heinemann, U. (1997). Frequency-dependent information flow from the entorhinal cortex to the hippocampus. Journal of Neurophysiology, 78(6), 3444–3449.

    CAS  PubMed  Google Scholar 

  • Gutfreund, Y., Segev, I., & et al. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. Journal of Neurophysiology, 483(Pt 3), 621– 640.

    CAS  Google Scholar 

  • Gutkin, B.S., & Ermentrout, G.B. (1998). Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H., Vervaeke, K., & Storm, J.F. (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na + current in rat hippocampal pyramidal cells. The Journal of Physiology, 545(3), 783–805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences, 23(5), 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon, B., Miura, R.M., & Puil, E. (1996). Models of subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology, 76(2), 698–714.

    CAS  PubMed  Google Scholar 

  • Izhikevich, E.M. (2001). Resonate-and-fire neurons. Neural Networks, 14, 883.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E.M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: The MIT Press.

    Google Scholar 

  • Kloeden, P., & Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Berlin: Springer.

    Book  Google Scholar 

  • Lindner, B. (2014). Low-pass filtering of information in the leaky integrate-and-fire neuron driven by white noise. In International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) (pp. 249–258). Berlin: Springer.

    Chapter  Google Scholar 

  • Lindner, B., Schimansky-Geier, L., & Longtin, A. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys Rev E, 66, 031,916.

    Article  Google Scholar 

  • Lindner, B., García-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports, 392, 321.

    Article  Google Scholar 

  • Lindner, B., Gangloff, D., Longtin, A., & Lewis, J.E. (2009). Broadband coding with dynamic synapses. The Journal of Neuroscience, 29, 2076.

    Article  CAS  PubMed  Google Scholar 

  • Mauro, A., Conti, F., Dodge, F., & Schor, R. (1970). Subthreshold behavior and phenomenological impedance of the squid giant axon. The Journal of General Physiology, 55(4), 497–523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Middleton, J.W., Longtin, A., Benda, J., & Maler, L. (2009). Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity. Journal of Neurophysiology, 101, 1160.

    Article  PubMed  Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puil, E., Meiri, H., & Yarom, Y. (1994). Resonant behavior and frequency preferences of thalamic neurons. Journal of Neurophysiology, 71(2), 575–582.

    CAS  PubMed  Google Scholar 

  • Rau, F., Clemens, J., Naumov, V., Hennig, R.M., & Schreiber, S. (2015). Firing-rate resonances in the peripheral auditory system of the cricket, gryllus bimaculatus. Journal of Neurophysiology. submitted.

  • Rice, S.O. (1944). Mathematical analysis of random noise. Bell Syst Tech J, 23, 282.

    Article  Google Scholar 

  • Richardson, M.J.E., Brunel, N., & Hakim, V. (2003). From subthreshold to firing-rate resonance. Journal of Neurophysiology, 89, 2538.

    Article  PubMed  Google Scholar 

  • Rieke, F., Bodnar, D., & Bialek, W. (1995). Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proceedings of the Biological Sciences, 262, 259.

    Article  CAS  Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1996). Spikes: Exploring the neural code. Cambridge: MIT Press.

    Google Scholar 

  • Rinzel, J., & Ermentrout, G.B. (1989). Analysis of neural excitability and oscillations. In Methods in Neuronal Modeling (pp. 135–169). Cambridge: MIT Press.

    Google Scholar 

  • Risken, H. (1984). The Fokker-Planck equation. Berlin: Springer.

    Book  Google Scholar 

  • Roddey, J.C., Girish, B., & Miller, J.P. (2000). Assessing the performance of neural encoding models in the presence of noise. Journal of Computational Neuroscience, 8(2), 95–112.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum, R., Rubin, J., & Doiron, B. (2012). Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Computational Biology, 8, e1002, 557.

    Article  CAS  Google Scholar 

  • Rotstein, H.G., & Nadim, F. (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37(1), 9–28.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sadeghi, S.G., Chacron, M.J., Taylor, M.C., & Cullen, K.E. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. The Journal of Neuroscience, 27(4), 771.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, S. (2004). Frequency preference and reliability of signal integration: the role of intrinsic conductances. PhD thesis. Berlin: Humboldt University.

    Google Scholar 

  • Schreiber, S., Erchova, I., Heinemann, U., & Herz, A.V. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92(1), 408–415.

    Article  PubMed  Google Scholar 

  • Sharafi, N., Benda, J., & Lindner, B. (2013). Information filtering by synchronous spikes in a neural population. Journal of Computational Neuroscience, 34, 285.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stein, B.E., & Stanford, T.R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9, 255.

    Article  CAS  PubMed  Google Scholar 

  • Stein, R.B., Holden, A.V., & French, A.S. (1972). Frequency-response, coherence, and information capacity of 2 neuronal models. Biophysical Journal, 12, 295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vilela, R.D., & Lindner, B. (2009). A comparative study of three different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation. Physical Review E, 80, 031,909.

    Article  Google Scholar 

  • Warland, D.K., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336.

    CAS  PubMed  Google Scholar 

  • Webb, B., Wessnitzer, J., Bush, S., Schul, J., Buchli, J., & Ijspeert, A. (2007). Resonant neurons and bushcricket behaviour. Journal of Comparative Physiology. A, 193(2), 285–288.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the BMBF (01GQ0901,01GQ0972,01GQ1001A,01GQ1403) and Deutsche Forschungsgemeinschaft (SFB 618(B1)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schreiber.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Tim Gollisch

Appendix A

Appendix A

1.1 A.1 Gradual transitions from resonators to integrators

Here, we present our numerical scheme to differentiate gradually between resonators and integrators. This allows us to study the relationship between the power filter properties and the information filter properties of these neuron models. The question arises whether there is a relation between impedance and coherence quality. Therefore we have to vary the impedance quality with respect to certain constraints. These constraints are experimentally motivated and should hold under variation of the impedance quality

  1. a)

    resonance frequency is fixed (5 Hz, 9.5 Hz, 15 Hz),

  2. b)

    natural frequency is smaller than resonance frequency (see Fig. 10 in Erchova et al. 2004), here: \(\frac {f_{\mathrm nat}}{f_{\text {res}}}\approx 0.8\),

  3. c)

    band-with of the impedance resonance should be proportional to the resonance freq. (see Fig. 7B in Erchova et al. 2004)

  4. d)

    impedance quality should be varied in a systematic way,

We implemented a numerical scheme which solves a problem under these constraints. It turned out that the resistance of the inductor R L is a suitable parameter to vary the impedance quality with the above described constraints. Suitable means that the experimentally observed parameter set of the stellate cell should lie on our parameterization manifold (see Fig. 17).

Fig. 17
figure 17

Parameter sets yielding the same resonance frequency of the impedance in the linear, subthreshold dynamics. a Variation of impedance quality. By fixing the resonance frequency and changing the resistance of the inductor R L one can systematically vary the impedance quality. This way gradual transitions from resonators to integrators (including the physiological parameter set of the stellate cell, red data point) were obtained. bd Lines of equal resonance frequency in subspaces of parameters of the subthreshold dynamics of the RF model (resistance R L versus damping factor, resistance R, and inductance L, respectively). e Impedance quality decreases with an increasing damping factor

Figure 17a–b shows how the increase of the resistance R L increases monotonically the impedance quality Q Z and changes the damping factor ζ, the membrane resistance R, and the inductance L.

We display in Fig. 17e the expected relationship between the damping factor ζ and the impedance quality: with increasing damping factor the impedance quality decreases. These approximately 75.000 parameter sets are then used to simulate the resonate-and-fire neuron model within different excitable regimes (variation of DC input I 0 at fixed D, D OU, V re s e t , τ abs) at different impedance resonance frequencies (see Figs. 911) in order to reveal the dependence of the filtering properties between power filtering, described by the impedance function and information filtering, described by the coherence function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blankenburg, S., Wu, W., Lindner, B. et al. Information filtering in resonant neurons. J Comput Neurosci 39, 349–370 (2015). https://doi.org/10.1007/s10827-015-0580-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0580-6

Keywords

Navigation