Skip to main content
Log in

A negative group delay model for feedback-delayed manual tracking performance

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We propose that feedback-delayed manual tracking performance is limited by fundamental constraints imposed by the physics of negative group delay. To test this hypothesis, the results of an experiment in which subjects demonstrate both reactive and predictive dynamics are modeled by a linear system with delay-induced negative group delay. Although one of the simplest real-time predictors conceivable, this model explains key components of experimental observations. Most notably, it explains the observation that prediction time linearly increases with feedback delay, up to a certain point when tracking performance deteriorates. It also explains the transition from reactive to predictive behavior with increasing feedback delay. The model contains only one free parameter, the feedback gain, which has been fixed by comparison with one set of experimental observations for the reactive case. Our model provides quantitative predictions that can be tested in further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander, G. E. (1994). Basal ganglia thalamocortical circuits - their role in control of movements. Journal of Clinical Neurophysiology, 11(4), 420–431.

    Article  CAS  PubMed  Google Scholar 

  • Baraik, A., Singh, H., & Parmananda, P. (2014). Experimental evidence of enhancement in the anticipation time by cascading. Physics Letters A, 378(20), 1356–1360.

    Article  CAS  Google Scholar 

  • Bariska, A. (2008). Time Machine, Anyone? https://www.dsprelated.com/blogimages/Andor Bariska/NGD/ngdblog. Pdf.

  • Bernard, S., Belair, J., & Mackey, M. C. (2001). Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems-Series B, 1(2), 233–256.

    Article  Google Scholar 

  • Beuter, A., Milton, J. G., Labrie, C., Glass, L., & Gauthier, S. (1990). Delayed visual feedback and movement control in Parkinson’s disease. Experimental Neurology, 110(2), 228–235.

    Article  CAS  PubMed  Google Scholar 

  • Blakely, J. N., Pruitt, M. W., & Corron, N. J. (2008). Time shifts and correlations in synchronized chaos. Chaos, 18(1), 013117.

    Article  PubMed  Google Scholar 

  • Brillouin, L. (1960). Wave Propagation and Group Velocity (Pure and Applied Physics (Vol. 8)). New York: Academic Press.

    Google Scholar 

  • Calvo, O., Chialvo, D. R., Eguiluz, V. M., Mirasso, C., & Toral, R. (2004). Anticipated synchronization: A metaphorical linear view. Chaos, 14(1), 7–13.

    Article  PubMed  Google Scholar 

  • Ciszak, M., Marino, F., Toral, R., & Balle, S. (2004). Dynamical mechanism of anticipating synchronization in excitable systems. Physical Review Letters, 93(11), 114102.

    Article  PubMed  Google Scholar 

  • Craik, K. J. W. (1947). Theory of the human operator in control systems I. The operator as an engineering system. British Journal of Psychology, 38, 56–61.

    CAS  PubMed  Google Scholar 

  • Dajani, H. R., & Lam, J. C. H. (2008). Prediction of pulsatile physiological signals using a negative group delay circuit. In Proceedings of the 1st WSEAS International Conference on Biomedical Electronics and Biomedical Informatics (pp. 91–96).

    Google Scholar 

  • Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M., & Linden, S. (2006). Simultaneous negative phase and group velocity of light in a metamaterial. Science, 312(5775), 892–894.

    Article  CAS  PubMed  Google Scholar 

  • Elkind, J. I., & Sprague, L. T. (1961). Transmission of information in simple manual control systems. IRE Transactions on Human Factors in Electronics, 2(1), 58–60.

    Article  Google Scholar 

  • Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.

    Article  CAS  PubMed  Google Scholar 

  • Foulkes, A. J. M., & Miall, R. C. (2000). Adaptation to visual feedback delays in a human manual tracking task. Experimental Brain Research, 131(1), 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Garrett, C. G. B., & McCumber, D. E. (1970). Propagation of a gaussian light pulse through an anomalous dispersion medium. Physical Review A, 1(2), 305.

    Article  Google Scholar 

  • Gerisch, H., Staude, G., Wolf, W., & Bauch, G. (2013). A three-component model of the control error in manual tracking of continuous random signals. Human Factors, 55(5), 985–1000.

    Article  PubMed  Google Scholar 

  • Giacomelli, G., & Politi, A. (1996). Relationship between delayed and spatially extended dynamical systems. Physical Review Letters, 76(15), 2686–2689.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., Blake, J., & Nasuto, S. J. (2016). Anticipatory engineering: anticipation in sensory-motor systems of human. Anticipation across Disciplines, 29, 275–282.

    Article  Google Scholar 

  • Just, W., Benner, H., & Schöll, E. (2003). Control of chaos by time-delayed feedback: A survey of theoretical and experimental aspects. Advances in Solid State Physics, 43(43), 589–603.

    Article  Google Scholar 

  • Kandic, M., & Bridges, G. E. (2013). Limits of negative group delay phenomenon in linear causal media. Progress in Electromagnetics Research, 134, 227–246.

    Article  Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, M., Nakanishi, T., & Sugiyama, K. (2003). Negative group delay and superluminal propagation: An electronic circuit approach. IEEE Journal of Selected Topics in Quantum Electronics, 9(1), 43–51.

    Article  CAS  Google Scholar 

  • Krstic, M. (2009). Delay compensation for nonlinear, adaptive, and PDE systems. Boston: Birkhauser.

    Book  Google Scholar 

  • Langenberg, U., Kessler, K., Hefter, H., Cooke, J. D., Brown, S. H., & Freund, H. J. (1992). Effects of delayed visual feedback during sinusoidal visuomotor tracking. European Journal of Neuroscience Society of Neuroscience Abstract Supplement, 5, 209–209.

    Google Scholar 

  • Lee, E. B. (1994). Approximation of linear input/output delay differential systems. In L. Markus, K. D. Elworthy, W. N. Everitt, & E. B. Lee (Eds.), Differential equations, dynamical systems, and control science: A festschrift in honor of Lawrence Markus - Lecture Notes in Pure and Applied Mathematics (pp. 659–682, Vol. 152). New York: M. Dekker.

  • Lichtner, M., Wolfrum, M., & Yanchuk, S. (2011). The spectrum of delay differential equations with large delay. SIAM Journal on Mathematical Analysis, 43(2), 788–802.

    Article  Google Scholar 

  • Loram, I. D., Lakie, M., & Gawthrop, P. J. (2009). Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control? Journal of Physiology-London, 587(6), 1343–1365.

    Article  CAS  Google Scholar 

  • Matias, F. S., Carelli, P. V., Mirasso, C. R., & Copelli, M. (2011). Anticipated synchronization in a biologically plausible model of neuronal motifs. Physical Review E, 84(2), 021922.

    Article  Google Scholar 

  • Matias, F. S., Carelli, P. V., Mirasso, C. R., & Copelli, M. (2015). Self-organized near-zero-lag synchronization induced by spike-timing dependent plasticity in cortical populations. PLoS One, 10(10), e0140504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88(2), 942–953.

    PubMed  Google Scholar 

  • Mendoza, C., Boccaletti, S., & Politi, A. (2004). Convective instabilities of synchronization manifolds in spatially extended systems. Physical Review E, 69(4), 047202.

    Article  CAS  Google Scholar 

  • Miall, R. C., & Jackson, J. K. (2006). Adaptation to visual feedback delays in manual tracking: evidence against the Smith Predictor model of human visually guided action. Experimental Brain Research, 172(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Michiels, W., & Niculescu, S. I. (2007). Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Philadelphia: SIAM.

    Book  Google Scholar 

  • Milton, J., Meyer, R., Zhvanetsky, M., Ridge, S., & Insperger, T. (2016). Control at stability’s edge minimizes energetic costs: expert stick balancing. J R Soc Interface, 13(119), 20160212. doi:10.1098/rsif.2016.0212.

  • Milton, J. G. (2011). The delayed and noisy nervous system: implications for neural control. Journal of Neural Engineering, 8(6), 065005.

  • Milton, J. G., Longtin, A., Beuter, A., Mackey, M. C., & Glass, L. (1989). Complex dynamics and bifurcations in neurology. Journal of Theoretical Biology, 138(2), 129–147.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, M. W., & Chiao, R. Y. (1997). Negative group delay and “fronts” in a causal system: An experiment with very low frequency bandpass amplifiers. Physics Letters A, 230(3–4), 133–138.

    Article  CAS  Google Scholar 

  • Munakata, T., Iwama, S., & Kimizuka, M. (2009). Linear stochastic system with delay: Energy balance and entropy production. Physical Review E, 79(3), 031104.

    Article  Google Scholar 

  • Nakanishi, T., Sugiyama, K., & Kitano, M. (2002). Demonstration of negative group delays in a simple electronic circuit. American Journal of Physics, 70(11), 1117–1121.

    Article  Google Scholar 

  • Nijhawan, R. (2008). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31(2), 179–198; discussion 198–239.

  • Pouget, A., & Snyder, L. H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience, 3(11), 1192–1198.

    Article  CAS  PubMed  Google Scholar 

  • Pyragiene, T., & Pyragas, K. (2013). Anticipating spike synchronization in nonidentical chaotic neurons. Nonlinear Dynamics, 74(1–2), 297–306.

    Article  Google Scholar 

  • Pyragiene, T., & Pyragas, K. (2015). Anticipating synchronization in a chain of chaotic oscillators with switching parameters. Physics Letters A, 379(47–48), 3084–3088.

    Article  CAS  Google Scholar 

  • Siddiqui, O. F., Mojahedi, M., & Eleftheriades, G. V. (2003). Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Transactions on Antennas and Propagation, 51(10), 2619–2625.

    Article  Google Scholar 

  • Smith, K. U. (1962). Delayed Sensory Feedback and Behavior. Philadelphia: W.B. Saunders Co..

    Google Scholar 

  • Smith, O. J. M. (1959). A controller to overcome dead time. ISA. Journal, 6(2), 28–33.

    Google Scholar 

  • Stepp, N. (2009). Anticipation in feedback-delayed manual tracking of a chaotic oscillator. Experimental Brain Research, 198(4), 521–525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepp, N., & Turvey, M. T. (2008). Anticipating synchronization as an alternative to the internal model. Behavioral and Brain Sciences, 31(2), 216–217.

    Article  Google Scholar 

  • Tass, P., Kurths, J., Rosenblum, M. G., Guasti, G., & Hefter, H. (1996). Delay-induced transitions in visually guided movements. Physical Review E, 54(3), R2224–R2227.

    Article  CAS  Google Scholar 

  • Voss, H. U. (2000). Anticipating chaotic synchronization. Physical Review E, 61(5), 5115–5119.

    Article  CAS  Google Scholar 

  • Voss, H. U. (2001a). A backward time shift filter for nonlinear delayed-feedback systems. Physics Letters A, 279(3–4), 207–214.

    Article  CAS  Google Scholar 

  • Voss, H. U. (2001b). Dynamic long-term anticipation of chaotic states. Physical Review Letters, 87(1), –014102.

  • Voss, H. U. (2002). Fast response by synchronization. In K.-H. Hoffmann (Ed.), 2nd caesarium - Coupling of Biological and Electronic Systems, Bonn (Germany), 2002 (pp. 119–126). Berlin: Springer.

    Google Scholar 

  • Voss, H. U. (2016a). The leaky integrator with recurrent inhibition as a predictor. Neural Computation, 28(8), 1498–1502.

  • Voss, H. U. (2016b). Signal prediction by anticipatory relaxation dynamics. Physical Review E, 93, 030201(R).

  • Voss, H. U. (2016c). A simple predictor based on delay-induced negative group delay. arxiv.org/abs/1606.07791 , 1–13.

  • Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(11), 1212–1217.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning U. Voss.

Ethics declarations

The experiment, published in Stepp (2009), was approved by the University of Connecticut Institutional Review Board and conducted in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Lance M. Optican

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, H.U., Stepp, N. A negative group delay model for feedback-delayed manual tracking performance. J Comput Neurosci 41, 295–304 (2016). https://doi.org/10.1007/s10827-016-0618-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0618-4

Keywords

Navigation