Skip to main content
Log in

Test Planning in Digital Microfluidic Biochips Using Efficient Eulerization Techniques

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Digital microfluidic technology is now being extensively used for implementing a lab-on-a-chip. Microfluidic biochips are often used for safety-critical applications, clinical diagnosis, and for genome analysis. Thus, devising effective and faster testing methodologies to warrant correct operations of these devices after manufacture and during bioassay operations, is very much needed. In this paper, we propose an Euler tour based technique to obtain the route plan of a test droplet for the purpose of structural testing of biochips. The method is applicable to various digital microfluidic biochip architectures, e.g., fully reconfigurable arrays, application specific biochips, pin-constrained irregular geometry biochips, and to defect-tolerant biochips. We show that in general, the optimal Eulerization and subsequent determination of an Euler tour in the graph model of a biochip can be abstracted in terms of the classical Chinese postman problem. The Euler tour can be identified by running the classical Hierholzer’s algorithm, which relies on a simple cycle decomposition and splicing method. This improved Eulerization technique leads to an efficient test plan for the chip. This can also be used in phase-based test planning that yields savings in testing time. The method provides a unified approach towards structural testing and can be easily adopted to design a droplet routing procedure for functional testing of digital microfluidic biochips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chakrabarty K, Su F (2007) Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques. CRC Press, New York

    Google Scholar 

  2. Cho SK, Fan SK, Moon H, Kim CJ (2002) Toward digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In: Proc. IEEE MEMS conference, pp 32–52

  3. Cook W, Rohe A (1999) Computing minimum-weight perfect matchings. INFORMS J Comput 11(2):138–148

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen TH, Leiserson CE, Rivest RL, Stein C (2004) Introduction to algorithms. Prentice-Hall of India Pvt. Ltd., New Delhi

    MATH  Google Scholar 

  5. Deo N (2007) Graph theory with applications to engineering and computer science. Prentice-Hall of India Pvt. Ltd., New Delhi

    Google Scholar 

  6. Edmonds J (1965) Paths, trees and flowers. Can J Math 17:449–467

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmonds J, Johnson EL (1973) Matching, euler tours, and the Chinese postman. Math Program 5(1):88–124

    Article  MathSciNet  MATH  Google Scholar 

  8. Fair RB, Khlystov A, Tailor TD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24(1):10–24

    Article  Google Scholar 

  9. Gabow HN (1990) Data structures for weighted matching and nearest common ancestors with linking. In: Proc. annual ACM-SIAM symposium on discrete algorithm, pp 434–443

  10. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York

    MATH  Google Scholar 

  11. Gross JL, Yellen J (2003) Handbook of graph theory. CRC Press, New York

    Book  Google Scholar 

  12. Hull HF, Danila R, Ehresmann K (2003) Smallpox and bioterrorism: public-health responses. J Lab Clin Med 142:221–228

    Article  Google Scholar 

  13. Lin CCY, Chang YW (2010) Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips. In: Proc. design automation conference (DAC), pp 641–646

  14. Mao V, Dwyer C, Chakrabarty K (2008) Fabrication defects and fault models for DNA self-assembled nanoelectronics. In: Proc. int. test conf. (ITC), pp 1–10

  15. Miller E, Wheeler AR (2009) Digital bioanalysis. Anal Bioanal Chem 393(2):419–426

    Article  Google Scholar 

  16. Mitra D, Ghoshal S, Rahaman H, Bhattacharya BB, Majumder DD, Chakrabarty K (2008) Accelerated functional testing of digital microfluidic biochips. In: Proc. Asian test symposium (ATS), pp 295–300

  17. Mitra D, Ghoshal S, Rahaman H, Chakrabarty K, Bhattacharya BB (2010) Test planning in digital microfluidic biochips using improved eulerization techniques and the Chinese Postman Problem. In: Proc. Asian test symposium (ATS), pp 111–116

  18. Pasaniuc B, Garfinkel R, Mandoiu I, Zelikovsky A (2010) Optimal testing of digital microfluidic biochips. INFORMS J Comput. doi:10.1287/ijoc.1100.0422

    Google Scholar 

  19. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  Google Scholar 

  20. Pollack MG, Paik PY, Shenderov AD, Pamula VK, Dietrich FS, Fair RB (2003) Investigation of electrowetting-based microfluidics for real-time PCR applications. In: Proc. miuTAS, pp 619–622 (2003)

  21. Roy S, Mitra D, Bhattacharya BB, Chakrabarty K (2010) Pin-constrained designs of digital microfluidic biochips for high-throughput bioassays. In: Proc. international symposium on electronic system design (ISED), pp 4–9

  22. Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321:1–10

    Article  Google Scholar 

  23. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Natural Computing 7(2):255–275

    Article  MathSciNet  Google Scholar 

  24. Srinivasan V, Pamula VK, Pollack MG, Fair RB (2003) A digital microfluidic biosensor for multianalyte detection. In: Proc. IEEE MEMS, pp 327–330

  25. Srinivasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: Proc. miuTAS, pp 1287–1290

  26. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  27. Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microfluidic systems. In: Proc. int. test conf. (ITC), pp 1192–1200

  28. Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sensors J 5(4):763–773

    Article  Google Scholar 

  29. Su F, Ozev S, Chakrabarty K (2006) Concurrent testing of digital microfluidics-based biochips. ACM Transact Des Automat Electron Syst 11(2):442–464

    Article  Google Scholar 

  30. Su F, Ozev S, Chakrabarty K (2006) Test planning and test resource optimization for droplet-based microfluidic systems. J Electron Test Theory Appl 22:199–210

    Article  Google Scholar 

  31. Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and dignosis of realistic defects in digital microfluidic biochips. J Electron Test Theory Appl 23:219–233

    Article  Google Scholar 

  32. Thies W, Urbanski JP, Thorsen T, Amarasinghe S (2008) Abstraction layers for scalable microfluidic biocomputing. Natural Computing 7(2):255–275

    Article  MathSciNet  MATH  Google Scholar 

  33. Thorsen T, Maerkl S, Quake S (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  Google Scholar 

  34. Venkatesh S, Memish ZA (2003) Bioterrorism: a new challenge for public health. Int J Antimicrob Agents 21:200–206

    Article  Google Scholar 

  35. Verpoorte E, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953

    Article  Google Scholar 

  36. Xu T, Chakrabarty K (2009) Design-for-testability for digital microfluidic biochips. In: Proc. IEEE VLSI test symposium (VTS), pp 309–314

  37. Xu T, Chakrabarty K (2009) Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans Biomed Circuits Syst 3(4):241–253

    Article  Google Scholar 

  38. Zhao Y, Xu T, Chakrabarty K (2008) Built-in self-test and fault diagnosis for lab-on-chip using digital microfluidic logic gates. In: Proc. int. test conf. (ITC), pp 1–10

  39. Zhao Y, Sturmer R, Chakrabarty K, Pamula V (2009) Optimization of droplet routing for an n-plex bioassay on a digital microfluidic lab-on-chip. In: Proc. IEEE international conference on biomedical circuits and systems, pp 241–244

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Mitra.

Additional information

Responsible Editor: B.C. Kim

Earlier versions of this paper have appeared, in part, in the proceedings of the Asian Test Symposium (ATS), 2008 and 2010 [16, 17]. The work of S. Ghoshal was supported by a grant from the Dept. of Science and Technology (DST), Govt. of India. The work of K. Chakrabarty was supported in part by the US National Science Foundation under grant no. CCF-0914895.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, D., Ghoshal, S., Rahaman, H. et al. Test Planning in Digital Microfluidic Biochips Using Efficient Eulerization Techniques. J Electron Test 27, 657–671 (2011). https://doi.org/10.1007/s10836-011-5239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-011-5239-2

Keywords

Navigation