Skip to main content
Log in

Study of Low-Cost Electrical Test Strategies for Post-Silicon Yield Improvement of MEMS Convective Accelerometers

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

In this paper, different strategies for post-silicon yield improvement of MEMS convective accelerometers are explored. A key feature of the proposed strategies is that they can be implemented at low-cost using electrical test equipment since they only rely on the measurement of the relative deviation of Wheatstone bridge impedance due to power dissipation in the heating element. Different electrical test flows are defined that implement either sensitivity binning, sensitivity calibration, or both. Optionally, an additional constraint can be inserted in the test flows in case power consumption performance has also to be satisfied in addition to sensitivity. The efficiency of the different strategies is evaluated and discussed considering a population of 1,000 devices generated through Monte-Carlo simulation. Finally, experimental measurements that validate the calibration principle are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Analog Devices. ADXL001 Datasheet, http://www.analog.com/static/imported-files/data_sheets/ADXL001.pdf

  2. Belete D, Razdan A, Schwarz W, Raina R, Hawkins C, Morehead J (2002) Use of DFT techniques in speed grading a 1 GHz+ microprocessor. Test Conference, 2002. Proc Int pp 1111–1119. doi: 10.1109/TEST.2002.1041868

  3. Chaehoi A, Mailly F, Latorre L, Nouet P (2006) Experimental and finite-element study of convective accelerometer on CMOS. Sensor Actuat A-Phys 132(1):78–84. doi:10.1016/j.sna.2006.04.057

    Google Scholar 

  4. Charlot B, Mir S, Parrain F, Courtois B. Generation of electrically induced stimuli for MEMS self-test. J Electron Test Theory Appl 17(6):459–470. doi:10.1023/A:1012860420235

  5. Cory BD, Kapur R, Underwood B (2003) Speed binning with path delay test in 150-nm technology. IEEE Des Test Comput 20(5):41–45. doi:10.1109/MDT.2003.1232255

    Article  Google Scholar 

  6. Dasnurkar S, Abraham J (2008) Characterization and testing of microelectromechnical accelerometers. Mixed-Signals, Sensors, and Systems Test Workshop, 2008. IMS3TW 2008. IEEE 14th International, pp 1–6. doi: 10.1109/IMS3TW.2008.4581609

  7. De Bruyker D, Cozma A, Puers R (1998) A combined piezoresistive/capacitive pressure sensor with self-test function based on thermal actuation. Sensor Actuat A-Phys 66(1–3):70–75. doi:10.1016/S0924-4247(97)01718-4

  8. Deb N, Blanton RD (2002) Built-in self test of CMOS-MEMS accelerometers. Test Conference, 2002. Proceedings International pp 1075–1084. doi: 10.1109/TEST.2002.1041864

  9. Dumas N, Azais F, Latorre L, Nouet P (2005) On-chip electro-thermal stimulus generation for a MEMS-based magnetic field sensor. VLSI Test Symposium, 2005. Proceedings 23rd IEEE, pp 213–218. doi: 10.1109/VTS.2005.62

  10. Dumas N, Azais F, Mailly F, Richardson A, Nouet P (2008) A novel method for test and calibration of capacitive accelerometers with a fully electrical setup. Design and Diagnostics of Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE Workshop on pp 1–6. doi: 10.1109/DDECS.2008.4538807

  11. Fenelly J et al. (2013/3) The Thermal Accelerometer Whitepaper MEMSIC Inc, Sensor Magazin, http://www.memsic.com/userfiles/files/publications/Articles/Accelerometer_Sensor-Magazine-Article_Sept_2012.pdf

  12. ITRS: International Technology Roadmap for Semiconductors (2011) Micro-Electro-Mechanical Systems http://www.itrs.net/Links/2011ITRS/2011Chapters/2011MEMS.pdf

  13. Leman O, Chaehoi A, Mailly F, Latorre L, Nouet P (2007) Modeling and system-level simulation of a CMOS convective accelerometer. Solid State Electron 51(11–12):1609–1617. doi:10.1016/j.sse.2007.09.039

    Google Scholar 

  14. Natarajan V, Bhattacharya S, Chatterjee A (2006) Alternate electrical tests for extracting mechanical parameters of MEMS accelerometer sensors. VLSI Test Symposium, 2006. Proceedings 24th IEEE p 6 doi: 10.1109/VTS.2006.16

  15. Rekik AA, Azais F, Dumas N, Mailly F, Nouet P (2010) Modeling the influence of etching defects on the sensitivity of MEMS convective accelerometers. Mixed-Signals, Sensors and Systems Test Workshop (IMS3TW), 2010 IEEE 16th International pp. 1–6. doi: 10.1109/IMS3TW.2010.5503011

  16. Rekik AA, Azais F, Dumas N, Mailly F, Nouet P (2011) An electrical test method for MEMS convective accelerometers: development and evaluation. Design, Automation & Test in Europe Conference & Exhibition (DATE) pp. 1–6. doi: 10.1109/DATE.2011.5763137

  17. Rekik AA, Azaïs F, Dumas N, Mailly F, Nouet P (2011) A MEMS convective accelerometer equipped with on-chip facilities for sensitivity electrical calibration. Mixed-Signals, Sensors and Systems Test Workshop (IMS3TW), 2011 IEEE 17th International. pp 82–87. doi: 10.1109/IMS3TW.2011.21

  18. Rekik AA, Azais F, Mailly F, Nouet P (2012) Design-for-manufacturability of MEMS convective accelerometers through adaptive electrical calibration strategy. Test Workshop (LATW), 2012 13th Latin American. pp 1–6. doi: 10.1109/LATW.2012.6261237

  19. Rocha LA, Dias RA, Cretu E, Mol L, Wolffenbuttel RF (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17(3):429–436. doi:10.1007/s00542-011-1252-8

    Google Scholar 

  20. Tsaur J-j, Du C-H, Lee C (2001) Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect. Sensor Actuat A-Phys 92(1–3):375–383. doi:10.1016/S0924-4247(01)00575-1

  21. Xie H et al. (2008) Accelerometers, chap 2.05 of Comprehensive Microsystems, ISBN: 978-0-444-52190-3, pp. 135–180

  22. Zeng J, Abadir M, Vandling G, Wang L, Kolhatkar A, Abraham J (2004) On correlating structural tests with functional tests for speed binning of high performance design. Test Conference, 2004. Proceedings ITC 2004. International. pp 31–37. doi: 10.1109/TEST.2004.1386934

  23. Zhao Y et al. (2004) Thermal convection accelerometer with 828 closed-loop heater control. US Patent 6,795,752 B1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Azaïs.

Additional information

Responsible Editor: L. M. Bolzani Pöhls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekik, A.A., Azaïs, F., Mailly, F. et al. Study of Low-Cost Electrical Test Strategies for Post-Silicon Yield Improvement of MEMS Convective Accelerometers. J Electron Test 30, 87–100 (2014). https://doi.org/10.1007/s10836-013-5423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-013-5423-7

Keywords

Navigation