Skip to main content
Log in

A Power Efficient Test Data Compression Method for SoC using Alternating Statistical Run-Length Coding

Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

A power efficient System-on-a-Chip test data compression method using alternating statistical run-length coding is proposed. To effectively reduce test power dissipation, the test set is firstly preprocessed by 2D reordering scheme. To further improve the compression ratio, 4 m partitioning of the runs and a smart filling of the don’t care bits provide the nice results, and alternating statistical run-length coding scheme is developed to encode the preprocessed test set. In addition, a simple decoder is obtained which consumed a little area overhead. The benchmark circuits verify the proposed power efficient coding method well. Experimental results show it obtains a high compression ratio, low scan-in test power dissipation and little extra area overhead during System-on-a-Chip scan testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chandra A, Chakrabarty K (2002) Low-power scan testing and test data compression for system-on-a-chip. IEEE Trans Comput Aided Des 21(5):597–604

    Article  Google Scholar 

  2. Chandra A, Chakrabarty K (2002) Reduction of SoC test data volume, scan power and testing time using alternating run-length codes. In: 39th Design Automation Conference, pp 673–678

  3. Chandra A, Chakrabarty K (2003) Test data compression and test resource partitioning for system-on-a-chip using frequency-directed run-length (FDR) codes. IEEE Trans Comput 52(8):1076–1088

    Article  Google Scholar 

  4. Chandra A, Chakrabarty K (2003) A unified approach to reduce SOC test data volume, scan power and testing time. IEEE Trans Comput Aided Des 22(3):352–362

    Article  Google Scholar 

  5. Czysz D, Kassab M, Lin X, Mrugalski G, Rajski J, Ticker J (2009) Low-power scan operation in test compression environment. IEEE Trans Comput Aided Des 28(11):1742–1755

    Article  Google Scholar 

  6. El-Maleh AH (2008) Test data compression for system-on-a-chip using extended frequency-directed run-length code. Electron Lett 2(3):155–163

    Google Scholar 

  7. El-Maleh AH (2008) Efficient test compression technique based on block merging. IET Comput Digit Tech 2(5):327–355

    Article  Google Scholar 

  8. Gonciari PT, Al-Hashimi BM, Nicolici N Improving compression ratio, area overhead, and test application time for system-on-a-chip test datacompression. Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition, pp 604–611

  9. Gonciari PT, Al-Hashimi BM, Nicolici N (2003) Variable-length input Huffman coding for system-on-a-chip test. IEEE Trans Comput Aided Des 22(6):783–796

    Article  Google Scholar 

  10. Haiying Y, Guo K, Xun S, Jiaping M, Hongying S (2015) A power efficient BIST TPG method on don’t care Bit based 2-D adjusting and hamming distance based 2-D reordering. J Electron Test 31(1):43–52

    Article  Google Scholar 

  11. Jas A, Ghosh-Dastidar J, Ng M-E, Touba NA (2003) An efficient test vector compression scheme using selective Huffman coding. IEEE Trans Comput Aided Des 22(6):797–806

    Article  Google Scholar 

  12. Kavousianos X, Kalligeros E, Nikolos D (2007) Optimal selective Huffman coding for test-data compression. IEEE Trans Comput 56(8):1146–1152

    Article  MathSciNet  Google Scholar 

  13. Lee L-J (2012) 2n-pattern run-length for test data compression. IEEE Trans Comput Aided Des 31(4):644–648

    Article  Google Scholar 

  14. Lee J, Touba NA (2007) LFSR-reseeding scheme achieving low-power dissipation during test. IEEE Trans Comput Aided Des 26(2):396–401

    Article  Google Scholar 

  15. Nourani M, Tehranipour MH (2005) RL-huffman encoding for test compression and power reduction in scan applications. ACM Trans Des Autom Electron 10(1):91–115

    Article  Google Scholar 

  16. Rosinger P, Al-Hashimi BA, Nicolici N (2004) Scan architecture with mutually exclusive scan segment activation for shift- and capture-power reduction. IEEE Trans Comput Aided Des 23(7):1142–1153

    Article  Google Scholar 

  17. Rosinger P, Gonciari PT, Al-Hashimi BM, Nicolici N (2001) Simultaneous reduction in volume of test data and power dissipationfor systems-on-a-chip. Electron Lett 37(24):1434–1436

    Article  Google Scholar 

  18. Ruan X, Rajendra K (2006) An efficient data-independent technique for compressing test vectors in systems-on-a-chip, Emerging VLSI Technologies and Architectures. In: IEEE Computer Society Annual Symposium

  19. Sivanantham S, Padmavathy M, Gopakumar G et al (2014) Enhancement of test data compression with multistage encoding. Integration 47(4):499–509

    Google Scholar 

  20. Tehranipoor M, Nourani M, Chakrabarty K (2005) Nine-coded compression technique for testing embedded cores in SoCs. IEEE Trans VLSI Syst 13(6):719–731

    Article  Google Scholar 

  21. Tenentes V, Kavousianos X (2013) High-quality statistical test compression with narrow ATE interface. IEEE Trans Comput Aided Des 32(9):1369–1382

    Article  Google Scholar 

  22. Touba NA (2006) Survey of test vector compression techniques. IEEE Des Test 23(4):294–303

    Article  Google Scholar 

  23. Tseng W-D, Lee L-J (2010) Test data compression using multi-dimensional pattern run-length codes. J Electron Test 26(3):393–400

    Article  Google Scholar 

  24. Wu T-B, Liu H-Z, Liu P-X (2013) Efficient test compression technique for SoC based on block merging and eight coding. J Electron Test 29(6):849–859

    Article  Google Scholar 

  25. Yuan H, Mei J, Song H, Guo K (2014) Test data compression for system-on-a-chip using count compatible pattern run-length coding. J Electron Test 30(2):237–242

    Article  Google Scholar 

  26. Yuan HY, Mei JP, Sun X, Cheng KT, Guo K (2015) A power efficient test data compression method on count compatible PRL coding. J Circuit Syst Comput 24(6):1550084

    Article  Google Scholar 

  27. Zhan W, El-Maleh A (2012) A new collaborative scheme of test vector compression based on equal-run-length coding (ERLC). Integration 45(1):91–98

    Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (61001049, 61372149 and 61370189) and Scholarship sponsored by China Scholarship Council [2013] 3018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Yuan.

Additional information

Responsible Editor: N. A. Touba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Guo, K., Sun, X. et al. A Power Efficient Test Data Compression Method for SoC using Alternating Statistical Run-Length Coding. J Electron Test 32, 59–68 (2016). https://doi.org/10.1007/s10836-016-5562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-016-5562-8

Keywords

Navigation