Skip to main content
Log in

A new approach to discover interlacing data structures in high-dimensional space

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

The discovery of structures hidden in high-dimensional data space is of great significance for understanding and further processing of the data. Real world datasets are often composed of multiple low dimensional patterns, the interlacement of which may impede our ability to understand the distribution rule of the data. Few of the existing methods focus on the detection and extraction of the manifolds representing distinct patterns. Inspired by the nonlinear dimensionality reduction method ISOmap, in this paper we present a novel approach called Multi-Manifold Partition to identify the interlacing low dimensional patterns. The algorithm has three steps: first a neighborhood graph is built to capture the intrinsic topological structure of the input data, then the dimensional uniformity of neighboring nodes is analyzed to discover the segments of patterns, finally the segments which are possibly from the same low-dimensional structure are combined to obtain a global representation of distribution rules. Experiments on synthetic data as well as real problems are reported. The results show that this new approach to exploratory data analysis is effective and may enhance our understanding of the data distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Bruske, J., & Sommer, G. (1998). An algorithm for intrinsic dimensionality estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5), 572–575.

    Article  Google Scholar 

  • Camastra, F., & Vinciarelli, A. (2002). Estimating the intrinsic dimension of data with a fractal-based method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10), 1404–1407.

    Article  Google Scholar 

  • Chang, H. D., & Wang, J. F. (1994). A robust stroke extraction method for handwritten Chinese characters. International Journal of Pattern Recognition and Artificial Intelligence, 8(5), 1223–1239.

    Article  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed., pp. 595–601). Cambridge: MIT and McGraw-Hill.

    MATH  Google Scholar 

  • Costa, J., & Hero, A. O. (2004). Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Transactions on Signal Processing, 52(8), 2210–2221.

    Article  MathSciNet  Google Scholar 

  • Cox, T., & Cox, M. (1994). Multidimensional scaling. London: Chapman & Hall.

    MATH  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed., pp. 517–556). New York: Wiley.

    MATH  Google Scholar 

  • Fukunaga, K., & Olsen, D. R. (1971). An algorithm for finding intrinsic dimensionality of data. IEEE Transactions on Computers, 20, 176–183.

    Article  MATH  Google Scholar 

  • Hyvarinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13, 411–430.

    Article  Google Scholar 

  • Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  • Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.

    Google Scholar 

  • Kambhatla, N., & Leen, T. K. (1997). Dimension reduction by local principal component analysis. Neural Computation, 9(7), 1493–1516.

    Article  Google Scholar 

  • Kégl, B. (2003). Intrinsic dimension estimation using packing numbers. In T. G. Dietterich (Ed.), Advances in neural information processing systems 14 (NIPS2002). Cambridge: MIT.

    Google Scholar 

  • Kohonen, T. (2001). Self-organizing maps, third extended edition, Springer series in information sciences (Vol. 30). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing: Design and analysis of algorithms (pp. 257–297). Redwood City: Benjamin/Cummings.

    MATH  Google Scholar 

  • Levina, E., & Bickel, P. J. (2005). Maximum likelihood estimation of intrinsic dimension. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (NIPS2004). Cambridge: MIT.

    Google Scholar 

  • Pettis, K., Bailey, I., Jain, T., & Dubes, R. (1979). An intrinsic dimensionality estimator from near-neighbor information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 25–37.

    Article  MATH  Google Scholar 

  • Raginsky, M., & Lazebnik, S. (2006). Estimation of intrinsic dimensionality using high-rate vector quantization. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems 18 (NIPS2005). Cambridge: MIT.

    Google Scholar 

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.

    Article  Google Scholar 

  • Sklansky, J., & Wassel, G. N. (1981). Pattern classifiers and trainable machines (pp. 112–113). New York: Springer-Verlag.

    MATH  Google Scholar 

  • Tenenbaum, J. B., Silvam, V. de., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.

    Article  Google Scholar 

  • Verveer, P. J., & Duin, R. P. W. (1995). An evaluation of intrinsic dimensionality estimators. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 81–86.

    Article  Google Scholar 

  • Zeng, J., & Liu, Z. Q. (2006). Stroke segmentation of Chinese characters using Markov random fields. In Proceedings of 18th international conference on pattern recognition (ICPR’06), (pp. 868–871).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, T., Zhang, C. & Abe, S. A new approach to discover interlacing data structures in high-dimensional space. J Intell Inf Syst 33, 3–22 (2009). https://doi.org/10.1007/s10844-008-0055-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-008-0055-6

Keywords

Navigation