Skip to main content
Log in

An adaptive learning automata-based ranking function discovery algorithm

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Due to the massive amount of heterogeneous information on the web, insufficient and vague user queries, and use of the same query by different users for different aims, the information retrieval process deals with a huge amount of uncertainty and doubt. Under such circumstances, designing an efficient retrieval function and ranking algorithm by which the most relevant results are provided is of the greatest importance. In this paper, a learning automata-based ranking function discovery algorithm in which different sources of information are combined is proposed. In this method, the learning automaton is used to adjust the portion of the final ranking that is assigned to each source of evidence based on the user feedback. All sources of information are first given the same importance. The proportion of a given source increases, if the documents provided by this source are reviewed by the user and decreases otherwise. As the proposed algorithm proceeds, the probability of appearance of each source in the final ranking gets proportional to its relevance to the user queries. Several simulation experiments are conducted on well-known data collections and query types to show the performance of the proposed algorithm. The obtained results demonstrate that the proposed algorithm outperforms several existing methods in terms of precision at position n, mean average precision, and normalized discount cumulative gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akbari Torkestani, J. (2012a). Stability-based virtual backbone formation in wireless mobile ad hoc networks. Telecommunication Systems (in press).

  • Akbari Torkestani, J. (2012b).Anew approach to the job scheduling problem in computational grids. Journal of Cluster Computing, in press. doi:10.1007/s10586-011-0192-5.

  • Akbari Torkestani, J. (2012c). Degree Constrained Minimum Spanning Tree Problem in Stochastic Graph. Journal of Cybernetics and Systems, 43(1), 1–21.

    Google Scholar 

  • Akbari Torkestani, J. & Meybodi, M. R. (2011a). LLACA: An adaptive localized clustering algorithm for wireless ad hoc networks based on learning automata. Journal of Computers & Electrical Engineering, 37, 461–474.

    Google Scholar 

  • Akbari Torkestani, J. & Meybodi, M. R. (2011b).Alink stability-basedmulticast routing protocol for wireless mobile ad hoc networks. Journal of Network and Computer Applications, 34(4), 1429–1440.

    Google Scholar 

  • Akbari Torkestani, J. & Meybodi, M. R.(2011c). Learning automata-based algorithms for solving stochastic minimum spanning tree problem. Journal of Applied Soft Computing, 11(6), 4064–4077.

  • Akbari Torkestani, J. & Meybodi, M. R. (2011d). A mobility-based cluster formation algorithm for wireless mobile ad hoc networks. Journal of Cluster Computing, 14(4), 311–324.

    Google Scholar 

  • Akbari Torkestani, J. & Meybodi, M. R. (2011e). A cellular learning automata-based algorithm for solving the vertex coloring problem. Journal of Expert Systems with Applications, 8, 9237–9247.

    Google Scholar 

  • Akbari Torkestani, J., & Meybodi, M. R. (2010a). A new vertex coloring algorithm based on variable action-set learning automata. Computing and Informatics, 29(3), 447–466.

    MathSciNet  Google Scholar 

  • Akbari Torkestani, J., & Meybodi, M. R. (2010b). An efficient cluster-based CDMA/TDMA scheme for wireless mobile AD-Hoc networks: A learning automata approach. Journal of Network and Computer Applications, 33, 477–490.

    Article  Google Scholar 

  • Baeza-Yates, R., & Ribeiro-Neto, B (1999). Modern information retrieval. Addison Wesley.

  • Barto, A. G., & Anandan, P. (1985). Pattern-recognizing stochastic learning automata. IEEE Transactions on Systems, Man, and Cybernetics, 15, 360–375.

    Google Scholar 

  • Berlt, K., Moura, E. S., Carvalho, A., Cristo, M., Ziviani, N., & Couto, T. (2010). Modeling the web as a hypergraph to compute page reputation. Information Systems, 35, 530–543.

    Article  Google Scholar 

  • Billard, E. A., & Lakshmivarahan, S. (1999). Learning in multi-level games with incomplete information-part I. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 19, 329–339.

    Article  Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Article  Google Scholar 

  • Calado, P., Cristo, M., Moura, E., Ziviani, N., Ribeiro-Neto, B., & Goncalves, M.A. (2003). Combining link-based and content-based methods for web document classification. In Proceedings of the 12th international conference on information and knowledge management (pp. 394–401). New York: ACM Press.

    Google Scholar 

  • Chen, H. (1995). Machine learning for information retrieval: Neural networks, symbolic learning, and genetic algorithms. Journal of the American Society for Information Science, 46(3), 194–216.

    Article  Google Scholar 

  • Craswell, N., Hawking, D., Wilkinson, R., & Wu, M. (2003). Overview of the TREC 2003 web track. In Proceedings of the 12th text retrieval conference (pp. 78–92).

  • Craswell, N., Robertson, S., Zaragoza, H., & Taylor, M. (2005). Relevance weighting for query independent evidence. In Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval (pp. 416–423). New York: ACM Press.

    Google Scholar 

  • Fan, W., Gordon, M. D., & Pathak, P. (2004a). A generic ranking function discovery framework by genetic programming for information retrieval. Information Processing & Management, 40(4), 587–602.

    Article  MATH  Google Scholar 

  • Fan, W., Gordon, M. D., & Pathak, P. (2004b). Discovery of context-specific ranking functions for effective information retrieval using genetic programming. IEEE Transactions on Knowledge and Data Engineering, 16(4), 523–527.

    Article  Google Scholar 

  • Fan, W., Fox, E., Pathak, P., & Wu, H. (2004c). The effects of fitness functions on genetic programming-based ranking discovery for web search. Journal of the American Society for Information Science and Technology, 55(7), 626–638.

    Article  Google Scholar 

  • Fan, W., Gordon, M.D., & Pathak, P. (2005). Genetic programming based discovery of ranking functions for effective web search. Journal of Management Information Systems, 21(4), 37–56.

    Google Scholar 

  • Fan, W., Gordon, M. D., & Pathak, P. (2006a). On linear mixture of experts approach to information retrieval. Decision Support Systems, 42(2), 975–987.

    Article  Google Scholar 

  • Fan, W., Gordon, M. D., & Pathak, P. (2006b). An integrated two-stage model for intelligent information routing. Decision Support Systems, 42(1), 362–374.

    Article  Google Scholar 

  • Fan, W., Pathak, P., & Wallace, L. (2006c). Nonlinear ranking function representations in genetic programming-based ranking discovery for personalized search. Decision Support Systems, 42, 1338–1349.

    Article  Google Scholar 

  • Fan, W., Pathak, P., & Zhou, M. (2009). Genetic-based approaches in ranking function discovery and optimization in information retrieval-a framework. Decision Support Systems, 47, 398–407.

    Article  Google Scholar 

  • Gordon, M. D., Fan, W., & Pathak, P. (2006). Adaptive Web search: Evolving a program that finds information. IEEE Intelligent Systems, 21(5), 72–77.

    Article  Google Scholar 

  • Hashim, A. A., Amir, S., & Mars, P. (1986). Application of learning automata to data compression. In K. S. Narendra (Ed.), Adaptive and learning systems (pp. 229–234). New York: Plenum Press.

    Google Scholar 

  • Hersh, W. R., Buckley, C., Leone, T. J., & Hickam, D. H. (1994). OHSUMED: An interactive retrieval evaluation and new large test collection for research. In Proceedings of the 17th annual ACM SIGIR conference (pp. 192–201).

    Google Scholar 

  • Horng, J. T., & Yeh, C. C. (2000). Applying genetic algorithms to query optimization in document retrieval. Information Processing & Management, 36, 737–759.

    Article  Google Scholar 

  • Jarvelin, K., & Kekalainen, J. (2000). IR evaluation methods for retrieving highly relevant documents. In Proceedings of the annual international ACM SIGIR conference on research and development in information retrieval (Vol. 23, pp. 41–48).

  • Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(4), 422–446.

    Article  Google Scholar 

  • Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the SIGKDD conference (pp. 133–142). New York: ACM Press.

    Google Scholar 

  • Keyhanipour, A. H., Piroozmand, M., & Badie, K. (2009). A GP-adaptive web ranking discovery framework based on combinative content and context features. Journal of Informetrics, 3, 78–89.

    Article  Google Scholar 

  • Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–622.

    Article  MathSciNet  MATH  Google Scholar 

  • Lakshmivarahan, S., & Thathachar, M. A. L. (1976). Bounds on the convergence probabilities of learning automata. IEEE Transactions on Systems, Man, and Cybernetics, 6, 756–763.

    Google Scholar 

  • Liu, T.-Y., Xu, J., Qin, T., Xiong, W., & Li, H. (2007). LETOR: Benchmark dataset for research on learning to rank for information retrieval. In SIGIR 2007 workshop on learning to rank for information retrieval (LR4IR 2007) (pp. 3–10).

  • Meybodi, M. R. (1983). Learning automata and its application to priority assignment in a queuing system with unknown characteristics. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of Oklahoma, Norman, Oklahoma, USA.

  • Narendra, K. S., & Thathachar, M. A. L. (1989). Learning automata: An introduction. New York: Printice-Hall.

    Google Scholar 

  • Nie, L., Davison, B. D., & Qi, X. (2006). Topical link analysis for web search. In Proceedings of the annual international ACM SIGIR conference on research and development in information retrieval (Vol. 29, pp. 91–98).

  • Oommen, B. J., & Hansen, E. R. (1987). List organizing strategies using stochastic move-to-front and stochastic move-to-rear operations. SIAM Journal of Computing, 16, 705–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Qin, T., Liu, T. Y., Zhang, X. D., Chen, Z., & Ma, W. Y. (2005). A study of relevance propagation for web search. In Proceedings of the annual international ACM SIGIR conference on research and development in information retrieval (Vol. 28, pp. 408–415).

  • Robertson, S. E. (1997). Overview of the okapi projects. Journal of Documentation, 53(1), 3–7.

    Article  Google Scholar 

  • Salton, G. (1963). Associative document retrieval techniques using bibliographic information. Journal of the ACM, 10(4), 440–457.

    Article  MATH  Google Scholar 

  • Shakery, A., & Zhai, C. X. (2003). Relevance propagation for topic distillation UIUC TREC 2003-web track experiments. In Proceedings of text retrieval conference (TREC).

  • Silva, T. P. C., Moura, E. S., Cavalcanti, J. M. B., Silva a, A. S., Carvalho, M. G., & Goncalves, M. A. (2009). An evolutionary approach for combining different sources of evidence in search engines. Information Systems, 34, 276–289.

    Article  Google Scholar 

  • Unsal, C., Kachroo, P., & Bay, J. S. (1999). Multiple stochastic learning automata for vehicle path control in an automated highway system. IEEE Transactions on Systems, Man, and Cybernetics-Part A, 29, 120–128.

    Article  Google Scholar 

  • Vrajitoru, V. (1998). Crossover improvement for the genetic algorithm in information retrieval. Information Processing & Management, 34, 405–415.

    Article  Google Scholar 

  • Wang, S., Ma, J., & He, Q. (2010). An immune programming-based ranking function discovery approach for effective information retrieval. Expert Systems with Applications, 37, 5863–5871.

    Article  Google Scholar 

  • Westerveld, T., Kraai, W., & Hiemstra, D. (2001). Retrieving web pages using content, links, urls and anchors. In Notebook of 10th text retrieval conference (TREC).

  • Xue, G. R., Yang, Q., Zeng, H. J., Yu, Y., & Chen, Z. (2005). Exploiting the hierarchical structure for link analysis. In Proceedings of the annual international ACM SIGIR conference (p. 28).

  • Zhai, C., & Lafferty, J. (2001). A study of smoothing methods for language models applied to Ad Hoc information retrieval. In Proceedings of SIGIR 2001 (pp. 334–342).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Akbari Torkestani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari Torkestani, J. An adaptive learning automata-based ranking function discovery algorithm. J Intell Inf Syst 39, 441–459 (2012). https://doi.org/10.1007/s10844-012-0197-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-012-0197-4

Keywords

Navigation