Skip to main content
Log in

Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of parts scheduling in a cellular manufacturing system (CMS) by considering exceptional parts processed on machines located in multiple cells. To optimize the scheduling of parts as well as to minimize material handling between cells, the practice has to develop processing sequences for the parts in cells. A commonly chosen objective is to find part sequences within cells which results in a minimum tardiness. This paper proposes a nonlinear mathematical programming model of the problem by minimizing the total weighted tardiness in a CMS. To solve the mathematical model, a scatter search approach is developed, in which the common components of scatter search are redefined and redesigned so as to better fit the problem. This scatter search approach considers two different methods to generate diverse initial solutions and two improvement methods, and adopts the roulette wheel selection in the combination method to further expand the conceptual framework and implementation of the scatter search. The proposed approach is compared with the commercial solver CPLEX on a set of test problems, some of which are large dimensions. Computational results have demonstrated the effectiveness of this scatter search approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arikan F., Gungor Z. (2005) A parametric model for cell formation and exceptional elements’ problems with fuzzy parameters. Journal of Intelligent Manufacturing 16(1): 103–114. doi:10.1007/s10845-005-4827-3

    Article  Google Scholar 

  • Askin R.G., Selim H.M., Vakharia A. (1997) A methodology for designing flexible cellular manufacturing systems. IIE Transactions 29: 599–610

    Google Scholar 

  • Baker K.R. (1990) Scheduling groups of jobs in the two-machine flow shop. Mathematical and Computer Modelling 13(3): 29–36. doi:10.1016/0895-7177(90)90368-W

    Article  Google Scholar 

  • Bazargan-lari M., Kaebernick H., Harraf A. (2000) Cell formation and layout designs in a cellular manufacturing environment: A case study. International Journal of Production Research 38(7): 1689–1709. doi:10.1080/002075400188807

    Article  Google Scholar 

  • Billo R.E., Bidanda B., Tate D. (1996) A genetic cluster algorithm for the machine-component grouping problem. Journal of Intelligent Manufacturing 7(3): 229–241. doi:10.1007/BF00118082

    Article  Google Scholar 

  • Burcu B.K., Halit Ü. (2006) A scatter search-based heuristic to locate capacitated transshipment points. Computers & Operations Research 34(10): 3112–3125

    Google Scholar 

  • Cheng R., Gen M., Tsujimura Y. (1996) A tutorial survey of job-shop scheduling problems using genetic algorithms. Computers & Industrial Engineering 30(4): 983–997. doi:10.1016/0360-8352(96)00047-2

    Article  Google Scholar 

  • Glover F. (1977) Heuristics for integer programming using surrogate constraints. Decision Sciences 8: 156–166. doi:10.1111/j.1540-5915.1977.tb01074.x

    Article  Google Scholar 

  • Glover, F. (1998). A template for scatter search and path relinking. Artificial Evolution, Lecture Notes in Computer Science 1363. Berlin: Springer, pp. 13–54.

  • Gupta J.N.D., Schaller J.E. (2006) Minimizing flow time in a flow-line manufacturing cell with family setup times. The Journal of the Operational Research Society 57(2): 163–176

    Google Scholar 

  • Hsu C.M., Su C. (1998) Multi-objective machine-component grouping in cellular manufacturing, a genetic algorithm. Production Planning and Control 9(2): 155–166. doi:10.1080/095372898234370

    Article  Google Scholar 

  • Krishnamoorthy B., Kamath M. (2000) Scheduling in a cellular manufacturing environment: A review of recent research. Journal of Engineering Valuation and Cost Analysis 2(5): 409–423

    Google Scholar 

  • Laguna M., Marti R. (2003) Scatter search. Methodology and implementations in C. Kluwer, Boston

    Google Scholar 

  • Liang M., Zolfaghari S. (1999) Machine cell formation considering processing times and machine capacities: An ortho-synapse Hopfield neural network approach. Journal of Intelligent Manufacturing 10(5): 437–447. doi:10.1023/A:1008923114466

    Article  Google Scholar 

  • Logendran R., Mai L., Talkington D. (1995) Combined heuristics for bi-level group scheduling problems. International Journal of Production Economics 38(2–3): 133–145. doi:10.1016/0925-5273(94)00083-M

    Article  Google Scholar 

  • Mahmood F., Dooley K.J., Starr P.J. (1990) An investigation of dynamic group scheduling heuristics in a job shop manufacturing cell. International Journal of Production Research 28(9): 1695–1711. doi:10.1080/00207549008942824

    Article  Google Scholar 

  • Marti R., Laguna M., Glover F. (2006) Principles of scatter search. European Journal of Operational Research 169(2): 359–372. doi:10.1016/j.ejor.2004.08.004

    Article  Google Scholar 

  • Reddy V., Narendran T.T. (2003) Heuristics for scheduling sequence-dependent set-up jobs in flow line cells. International Journal of Production Research 41(1): 193–206. doi:10.1080/00207540210163973

    Article  Google Scholar 

  • Ruben R.A., Mosier C.T., Mahmoodi F. (1993) Comprehensive analysis of group scheduling heuristics in a job shop cell. International Journal of Production Research 31(6): 1343–1369. doi:10.1080/00207549308956795

    Article  Google Scholar 

  • Safaei N., Saidi-Mehrabad M., Babakhani M. (2007) Designing cellular manufacturing systems under dynamic and uncertain conditions. Journal of Intelligent Manufacturing 18(3): 383–399. doi:10.1007/s10845-007-0029-5

    Article  Google Scholar 

  • Schaller J. (2000) A comparison of heuristics for family and job scheduling in a flow-line manufacturing cell. International Journal of Production Research 38(2): 287–308. doi:10.1080/002075400189419

    Article  Google Scholar 

  • Selim H.M., Askin R.G., Vakharia A.J. (1998) Cell formation in group technology: Review, evaluation and direction for future research. Computers & Industrial Engineering 34: 2–30. doi:10.1016/S0360-8352(97)00147-2

    Article  Google Scholar 

  • Skorin-Kapov J., Vakharia A.J. (1993) Scheduling a flow-line manufacturing cell: A tabu search approach. International Journal of Production Research 31(7): 1721–1734. doi:10.1080/00207549308956819

    Article  Google Scholar 

  • Solimanpur M., Vrat P., Shankar R. (2004) A heuristic to minimize makespan of cell scheduling problem. International Journal of Production Economics 88(3): 231–241. doi:10.1016/S0925-5273(03)00196-8

    Article  Google Scholar 

  • Sridhar J., Rajendran C. (1994) A genetic algorithm for family and job scheduling in a flowline-based manufacturing cell. Computers & Industrial Engineering 27: 469–472. doi:10.1016/0360-8352(94)90336-0

    Article  Google Scholar 

  • Tsai C.H., Li R.-K. (2000) Due-date oriented scheduling heuristic for job shop cellular manufacturing system. International Journal of Industrial Engineering: Theory Applications and Practice 7(1): 76–88

    Google Scholar 

  • Venkataramanaiah S. (2008) Scheduling in cellular manufacturing systems: A heuristic approach. International Journal of Production Research 46(2): 429–449. doi:10.1080/00207540601138577

    Article  Google Scholar 

  • Vin E., De Lit P., Delchambre A. (2005) A multiple-objective grouping genetic algorithm for the cell formation problem with alternative routings. Journal of Intelligent Manufacturing 16(2): 189–205. doi:10.1007/s10845-004-5888-4

    Article  Google Scholar 

  • Wang T.Y., Wu K.B., Liu Y.W. (2001) A simulated annealing algorithm for facility layout problems under variable demand in cellular manufacturing systems. Computers in Industry 46(2): 181–188. doi:10.1016/S0166-3615(01)00107-5

    Article  Google Scholar 

  • Wei N.C., Mejabi O.O. (2008) A clustering approach for minimizing intercell trips in cell formation. Journal of Intelligent Manufacturing 19(1): 13–20. doi:10.1007/s10845-007-0042-8

    Article  Google Scholar 

  • Wemmerlov U., Johnson D.J. (1997) Cellular manufacturing at 46 user plants: Implementation experiences and performance improvements. International Journal of Production Research 35(1): 29–49. doi:10.1080/002075497195966

    Article  Google Scholar 

  • Wemmerlov U., Vakharia A.J. (1991) Job and family scheduling of a flow-line manufacturing cell: A simulation study. IIE Transactions 23(4): 383–393. doi:10.1080/07408179108963871

    Article  Google Scholar 

  • Willow C.C. (2002) A feedforward multi-layer neural network for machine cell formation in computer integrated manufacturing. Journal of Intelligent Manufacturing 13(2): 75–87. doi:10.1023/A:1014524611895

    Article  Google Scholar 

  • Wu X., Chao-Hsien C., Yunfeng W., Weili Y. (2007) A genetic algorithm for cellular manufacturing design and layout. European Journal of Operational Research 181(1): 156–167. doi:10.1016/j.ejor.2006.05.035

    Article  Google Scholar 

  • Yang W.H., Liao C.J. (1996) Group scheduling on two cells with intercell movement. Computers & Operations Research 23(10): 997–1006. doi:10.1016/0305-0548(96)00003-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Wang, X., Kaku, I. et al. Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach. J Intell Manuf 21, 525–537 (2010). https://doi.org/10.1007/s10845-008-0236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-008-0236-8

Keywords

Navigation