Skip to main content

Advertisement

Log in

Multi-objective fuzzy assembly line balancing using genetic algorithms

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a fuzzy extension of the simple assembly line balancing problem of type 2 (SALBP-2) with fuzzy job processing times since uncertainty, variability, and imprecision are often occurred in real-world production systems. The jobs processing times are formulated by triangular fuzzy membership functions. The total fuzzy cost function is formulated as the weighted-sum of two bi-criteria fuzzy objectives: (a) Minimizing the fuzzy cycle time and the fuzzy smoothness index of the workload of the line. (b) Minimizing the fuzzy cycle time of the line and the fuzzy balance delay time of the workstations. A new multi-objective genetic algorithm is applied to solve the problem whose performance is studied and discussed over known test problems taken from the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E. J., Ferris M. C. (1994) Genetic algorithms for combinatorial optimization: the assembly line balancing problem. INFORMS Journal on Computing 6: 161–173

    Article  Google Scholar 

  • Bäck T. (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York, NY

    Google Scholar 

  • Baudin M. (2002) Lean assembly: The nuts and bolts of making assembly operations flow, productivity. Productivity Press, New York

    Google Scholar 

  • Baybars I. (1986) A survey of exact algorithms for the simple assembly line balancing problem. Management Science 32: 909–932

    Article  Google Scholar 

  • Baykasoglu A. (2006) Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. Journal of Intelligent Manufacturing 17: 217–232

    Article  Google Scholar 

  • Becker C., Scholl A. (2006) A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research 168(3): 694–715

    Article  Google Scholar 

  • Brudaru, O., & Valmar, B. (2004). Genetic Algorithm with embryonic chromosomes for assembly line balancing with fuzzy processing times. In 8th international research/expert conference trends in the development of machinery and associated technology, TMT 2004. Neum, Bosnia and Herzegovina.

  • Chiang W. C. (1998) The application of a tabu search metaheuristic to the assembly line balancing problem. Annals of Operations Research 77: 209–227

    Article  Google Scholar 

  • Erel E., Sarin S. (1998) A survey of the assembly line balancing procedures. Production Planning and Control 9(5): 414–434

    Article  Google Scholar 

  • Gen M., Cheng R. (2000) Genetic algorithms and engineering optimisation. Wiley-Interscience, New York, NY

    Google Scholar 

  • Gen M., Tsujimura Y., Li Y. (1996) Fuzzy assembly line balancing using genetic algorithms. Computers and Industrial Engineering 31(3/4): 631–634

    Article  Google Scholar 

  • Glover F. (1989) Tabu-search-Part I. ORSA Journal Computing 1(3): 190–206

    Article  Google Scholar 

  • Glover F. (1990) Tabu-search-Part II. ORSA Journal Computing 2(1): 4–32

    Article  Google Scholar 

  • Goldberg D. E. (1989) Genetic algorithm in search, optimization and machine learning. Addison Wesley, Reading, Massachusetts

    Google Scholar 

  • Heinrici A. et al (1994) A comparison between simulated annealing and tabu search with an example from the production planning. In: Dyckhoff H. (eds) Operations research proceedings 1993. Springer, Berlin, pp 498–503

    Chapter  Google Scholar 

  • Holland J. H. (1975) Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Kaufmann A., Gupta M. M. (1985) Introduction to fuzzy arithmetic. Van Nostrand Reinhold, New York

    Google Scholar 

  • Kim Y. K., Kim Y. J., Kim Y. (1996) Genetic algorithms for assembly line balancing with various objectives. Computers and Industrial Engineering 30(3): 397–409

    Article  Google Scholar 

  • Kirkpatrick S., Gelatt C. D. Jr., Vecchi M. P. (1983) Optimization by simulated annealing. Science 220: 671–680

    Article  Google Scholar 

  • Michalewitz Z. (1996) Genetic algorithms + data structures = evolution programs (3rd ed.). Springer, Berlin

    Google Scholar 

  • Murata T., Ishibuchi H., Tanaka H. (1996) Multi-objective genetic algorithms and its application to flowshop scheduling. Computers and Industrial Engineering 30(4): 957–968

    Article  Google Scholar 

  • Nearchou A. C. (2008) Multi-objective balancing of assembly lines by population heuristics. International Journal of Production Research 46(8): 2275–2297

    Article  Google Scholar 

  • Oman S., Cunningham P. (2001) Using case retrieval to seed genetic algorithms. International Journal of Computational Intelligence and Applications 1(1): 71–82

    Article  Google Scholar 

  • Ozcan U., Toklu B. (2009) A new hybrid improvement heuristic approach to simple straight and U-type assembly line balancing problems. Journal of Intelligent Manufacturing 20: 123–136

    Article  Google Scholar 

  • Rekiek B., De Lit P., Pellichero F., L’Englise T., Fouda P., Falkenauer E. et al (2001) A multiple objective grouping genetic algorithm for assembly line design. Journal of Intelligent Manufacturing 12: 467–485

    Article  Google Scholar 

  • Sabuncuoglu I., Erel E., Tanyer M. (2000) Assembly line balancing using genetic algorithms. Journal of Intelligent Manufacturing 11: 295–310

    Article  Google Scholar 

  • Scholl A. (1999) Balancing and sequencing of assembly lines. Physica-Verlag, Heidelberg, Germany

    Google Scholar 

  • Scholl A., Becker C. (2006) State of the art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168(3): 666–693

    Article  Google Scholar 

  • Scholl A., Voß S. (1996) Simple assembly line balancing—Heuristic approaches. J Heuristics 2: 217–244

    Article  Google Scholar 

  • Tasan S. O., Tunali S. (2008) A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing 19(1): 49–69

    Article  Google Scholar 

  • Tsujimura Y., Gen M., Kubota E. (1995) Solving fuzzy assembly-line balancing problem with genetic algorithms. Computers and Industrial Engineering 29(1–4): 543–547

    Article  Google Scholar 

  • Watanabe T., Hashimoto Y., Nishikawa I., Tokumaru H. (1995) Line balancing using a genetic evolution model. Control Engineering Practice 3: 60–76

    Article  Google Scholar 

  • Zhang, W., Gen, M. (2009). An efficient multiobjective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. Journal of Intelligent Manufacturing., (available on-line) doi:10.1007/s10845-009-0295-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas C. Nearchou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharia, P.T., Nearchou, A.C. Multi-objective fuzzy assembly line balancing using genetic algorithms. J Intell Manuf 23, 615–627 (2012). https://doi.org/10.1007/s10845-010-0400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-010-0400-9

Keywords

Navigation