Skip to main content

Advertisement

Log in

Interoperability requirements for automated manufacturing systems in construction

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Multi-disciplinary software interoperability in the Architecture, Engineering, Construction and Operations industry is becoming a new and widely adopted business culture. Technical advances in interoperability architectures, frameworks, methods and standards during the last decade resulted in higher maturity of product and process models. Mature models, in effect, enable data exchange by an increasing number of software applications in the industry. This establishes trust in data exchange and results in the lower cost impact of inefficient interoperability. The negative cost impact increases with advancing life-cycle phase, from planning and design phase to construction phase and to operation and maintenance phase. Interoperability in the planning and design phase is most mature and well published, while interoperability in the construction phase and for automated manufacturing is less researched. This paper reviews state-of-the art automated manufacturing systems in construction and researches interoperability requirements for automated construction in context of the entire building lifecycle. Our research is based on experimental free-form clay building, designed with embedded simple HVAC components, and manufactured with additive layer technology. Conclusions provide valuable results for interoperability research and practice in construction projects with automated manufacturing systems in place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AIAG-NIST. (2003). Automotive Industry Action Group—NIST Product Data Management Interoperability Technical Report D-16, 109.

  • Aifaoui, N., Deneux, D., Soenen, R., et al. (2006). Feature-based interoperability between design and analysis processes. Journal of Intelligent Manufacturing, 17, 13–27. doi:10.1007/s10845-005-5510-4.

    Article  Google Scholar 

  • ASCE. (2008). Civil engineering body of knowledge for the 21st century: Preparing the civil engineer for the future (2nd ed), 191.

  • ASTM International. (2013). ASTM F2915-12 standard specification for additive manufacturing file format (AMF) Version 1.1. http://www.astm.org/Standards/F2915.htm. Accessed 28 Aug 2013.

  • BIM Industry Working Group. (2011). A report for the Government Construction Client Group, 107.

  • Bogus, S. M., Diekmann, J. E., Molenaar, K. R., et al. (2011). Simulation of overlapping design activities in concurrent engineering. Journal of Construction Engineering and Management, 137, 950–957. doi:10.1061/(ASCE)CO.1943-7862.0000363.

    Article  Google Scholar 

  • Bogus, S. M., Molenaar, K. R., & Diekmann, J. E. (2005). Concurrent engineering approach to reducing design delivery time. Journal of Construction Engineering and Management, 131, 1179–1185. doi:10.1061/(ASCE)0733-9364(2005) 131:11(1179).

    Google Scholar 

  • BuildingSMART-International. (2013). Industry Foundation Classes (IFC) data model—buildingSMART. http://www.buildingsmart.org/standards/ifc. Accessed 26 Aug 2013.

  • California U of S. (2013). PowerPoint slides \({\vert }\) contour crafting. http://www.contourcrafting.org/powerpoint-slides/. Accessed 14 Apr 2013.

  • Chapman, R., Gilbert, S., & Butry, D. (2011). Metrics and tools for construction productivity project.

  • Coleman, G. S., & Jun, J. W. (2012). Interoperability and the construction process—A white paper for building owners and project decision-makers.

  • Diez, R., Padrón, V. M., Abderrahim, M., & Balaguer, C. (2007). AUTMOD3: The integration of design and planning tools for automatic modular construction. International Journal of Advanced Robotics Systems, 4, 457–468.

    Google Scholar 

  • Dini, E. (2009). D-Shape. http://www.d-shape.com/cose.htm. Accessed 14 Apr 2013.

  • Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors, 648.

  • Gallaher, M., & Chapman, R. (2004). Cost analysis of inadequate interoperability in the US capital facilities industry.

  • Gallaher, M. P., O’Connor, A. C., Dettbarn, J. L., & Gilday, L. T. (2004). Cost analysis of inadequate interoperability in the U.S. Capital Facilities Industry, NIST.

  • Gao, J., Yao, Y., Zhu, V. C. Y., et al. (2009). Service-oriented manufacturing: A new product pattern and manufacturing paradigm. Journal of Intelligent Manufacturing, 22, 435–446. doi:10.1007/s10845-009-0301-y.

    Article  Google Scholar 

  • Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19, 522–530. doi:10.1016/j.autcon.2009.11.003.

    Article  Google Scholar 

  • Hanna, A. S., Chang, C., Lackney, J. A., & Sullivan, K. T. (2005). Overmanning impact on construction labor productivity. ASCE Conference on Proceedings, 183, 75. doi:10.1061/40754(183)75.

    Google Scholar 

  • Hanna, A. S., Chang, C.-K., Sullivan, K. T., & Lackney, J. A. (2008). Impact of shift work on labor productivity for labor intensive contractor. Journal of Construction Engineering and Management, 134, 197–204. doi:10.1061/(ASCE)0733-9364(2008) 134:3(197).

    Google Scholar 

  • Jordan, D., Evdemon, J., Alves, A., & Arkin, A. (2007). Web services business process execution language version 2.0 (pp. 1–264), OASIS.

  • Khoshnevis, B. (2004). Automated construction by contour crafting-related robotics and information technologies. Automation in Construction, 13, 5–19. doi:10.1016/j.autcon.2003.08.012.

    Article  Google Scholar 

  • Klinc, R., Turk, Z., & Dolenc, M. (2009). Engineering collaboration 2.0: Requirements and expectations. ITcon, 14, 473–488.

    Google Scholar 

  • Kudoh, R. (8–9 May 1995). Implementation of an automated building construction system. In Proceedings of the 13th international CIB world build. congr. res. technol. dev. as an invest. constr. ind (pp. 17–28). Amsterdam, Netherlands. in-house publishing, Rotterdam (Netherlands).

  • Lorterapong, P., & Ussavadilokrit, M. (2012). Construction ccheduling using the constraint satisfaction problem method. Journal of Construction Engineering and Management, 139, 414–422. doi:10.1061/(ASCE)CO.1943-7862.0000582.

    Article  Google Scholar 

  • Loukis, E. N., & Charalabidis, Y. K. (2013). An empirical investigation of information systems interoperability business value in European firms. Computers in Industry, 64, 412–420. doi:10.1016/j.compind.2013.01.005.

    Article  Google Scholar 

  • Mokhtar, A., & Xu, X. (2009). Machining precedence of 21/2D interacting features in a feature-based data model. Journal of Intelligent Manufacturing, 22, 145–161. doi:10.1007/s10845-009-0268-8.

    Article  Google Scholar 

  • Mokhtar, A., Xu, X., & Lazcanotegui, I. (2009). Dealing with feature interactions for prismatic parts in STEP-NC. Journal of Intelligent Manufacturing, 20, 431–445. doi:10.1007/s10845-008-0144-y.

    Article  Google Scholar 

  • Object Management Group. (2013). BPMN. http://www.bpmn.org/. Accessed 27 Aug 2013.

  • OpenSCAD Community. (2013). OpenSCAD—The programmers solid 3D CAD modeller. http://www.openscad.org/. Accessed 28 Aug 2013.

  • Ray, S. R., & Jones, A. T. (2006). Manufacturing interoperability. Journal of Intelligent Manufacturing, 17, 681–688. doi:10.1007/s10845-006-0037-x.

    Article  Google Scholar 

  • Rebolj, D., Fischer, M., Endy, D., et al. (2011). Can we grow buildings? Concepts and requirements for automated nano- to meter-scale building. Advanced Engineering Informatics, 25, 390–398. doi:10.1016/j.aei.2010.08.006.

    Article  Google Scholar 

  • Reintjes, J. F. (1991). Numerical control: Making a new technology (Oxford Series on Advanced Manufacturing), 240.

  • Rojas, E. M., & Aramvareekul, P. (2003). Is construction labor productivity really declining? Journal of Construction Engineering Management, 129, 41–46. doi:10.1061/(ASCE)0733-9364(2003) 129:1(41).

    Google Scholar 

  • Shinko Research Co. L. (2007). Automation of building construction and building products industry—state of the art in Japan. http://www.tekes.fi/fi/gateway/PTARGS_0_201_403_994_2095_43/http;/tekesali2;7087/publishedcontent/publish/programmes/rak_ymparisto/documents/japanreport.pdf. Accessed 14 Apr 2013.

  • Song, L., & AbouRizk, S. M. (2008). Measuring and modeling labor productivity using historical data. Journal of Construction Engineering and Management, 134, 786. doi:10.1061/(ASCE)0733-9364(2008) 134:10(786).

  • Sonmez, R., & Rowings, J. E. (1998). Construction labor productivity modeling with neural networks. Journal of Construction Engineering and Management, 124, 498–504. doi:10.1061/(ASCE)0733-9364(1998)124:6(498).

    Google Scholar 

  • Thomas, H. R., Maloney, W. F., Horner, R. M. W., et al. (1990). Modeling construction labor productivity. Journal of Construction Engineering and Management, 116, 705. doi:10.1061/(ASCE)0733-9364(1990) 116:4(705).

  • Wakisaka, T., Furuya, N., Inoue, Y., & Shiokawa, T. (2000). Automated construction system for high-rise reinforced concrete buildings. Automation in Construction, 9, 229–250. doi:10.1016/S0926-5805(99)00039-4.

    Article  Google Scholar 

  • Wang, H., Akinci, B., Garrett, J. H., et al. (2009). Semi-automated model matching using version difference. Advanced Engineering Informatics, 23, 1–11. doi:10.1016/j.aei.2008.05.005.

    Article  Google Scholar 

  • Wang, Q., El-Gafy, M., & Zha, J. (2010). Bi-level framework for measuring performance to improve productivity of construction enterprises. In Constr. Res. Congr. (pp. 970–979). Reston, VA: American Society of Civil Engineers.

  • Watkins, M., Mukherjee, A., Onder, N., & Mattila, K. (2009). Using agent-based modeling to study construction labor productivity as an emergent property of individual and crew interactions. Journal of Construction Engineering and Management, 135, 657. doi:10.1061/(ASCE)CO.1943-7862.0000022.

    Article  Google Scholar 

  • Wright, P. K. (2001). 21st Century manufacturing (1st ed), Prentice Hall.

  • Zhang, F., & Jiang, P. (2013). Complexity analysis of distributed measuring and sensing network in multistage machining processes. Journal of Intelligent Manufacturing, 24, 55–69. doi:10.1007/s10845-011-0538-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Tibaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibaut, A., Rebolj, D. & Nekrep Perc, M. Interoperability requirements for automated manufacturing systems in construction. J Intell Manuf 27, 251–262 (2016). https://doi.org/10.1007/s10845-013-0862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-013-0862-7

Keywords

Navigation