Skip to main content

Advertisement

Log in

Optimization and practical verification of system configuration parameter design for a photovoltaic thermal system combined with a reflector

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This study designed and optimized the system parameters for a photovoltaic thermal system (PV/thermal system) combined with reflectors. Moreover, it discussed the gain of electrical efficiency and thermal efficiency on the system after adding two reflectors on each of the south and north sides, and adjusting the water circulation system. As the rising angle and position of the sun varies each season, in order to make this study more rigorous, experiments were conducted in four seasons of a year. The Taguchi orthogonal array was used for experimental planning, and the optimal parameters were analyzed for electrical efficiency and thermal efficiency. The analysis of variance was conducted to examine the influential parameters, and principal component analysis was used to calculate the principal component point of each experiment. The results were employed to construct a response surface methodology model. Finally, the steepest descent method was applied to obtain the optimal parameters. The reflector theory was applied to calculate the gain of solar radiation amount after installing the reflector. Moreover, the gain was inputted into the simulation software TRNSYS to simulate the electrical power output and the water temperature in the water storage tank. The confirmatory experiments of the four seasons found that the electrical energy after installing the reflector increased by 0.117–0.183 kWh, and the thermal energy increased by 1.7–2.6 \(^{\circ }\hbox {C}\). The experiment confirmed that the prediction error was \(<\)4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

P:

Total generated electrical energy during the day (kWh)

G:

Total solar radiation energy during the day \((\hbox {J/m}^{2})\)

A:

Module dimension \((\hbox {m}^{2})\)

\(\hbox {V}_{\mathrm{m}}\) :

PV voltage at maximum power point (V)

\(\hbox {I}_{\mathrm{m}}\) :

PV current at maximum power point (A)

Q:

Total generated thermal energy during the day (J)

V:

Water mass flow rate (kg/s)

\(\hbox {C}_{\mathrm{p}}\) :

Water specific heat (4.18 kJ/kg \(^\circ \hbox {C}\))

\(\hbox {T}_{\mathrm{f}}\) :

Water final temperature \(({^\circ }\hbox {C})\)

\(\hbox {T}_{\mathrm{i}}\) :

Water initial temperature \(({^\circ }\hbox {C})\)

\(\hbox {A}_{\mathrm{r1\_a}}\) :

Actual receivable area of upper reflector \((\hbox {m}^{2})\)

\(\hbox {W}_{1}\) :

Upper plate width (m)

\(\hbox {W}_{1^{\prime }}\) :

Upper plate reflect to module width (m)

\(\hbox {L}_{1^{\prime }}\) :

Upper plate reflect to module height (m)

\(\hbox {L}_{1}\) :

Upper plate height (m)

\(\hbox {A}_{\mathrm{r1}}\) :

Reflection area of upper reflector \((\hbox {m}^{2})\)

\(\uptheta \) :

Included angle between reflector and azimuth \(({^\circ }\hbox {C})\)

\(\hbox {A}_{\mathrm{r2\_a}}\) :

Actual receivable area of lower reflector \((\hbox {m}^{2})\)

\(\hbox {W}_{2}\) :

Lower plate width (m)

\(\hbox {W}_{2^{\prime }}\) :

Lower plate reflect to module width (m)

\(\hbox {L}_{2}\) :

Lower plate height (m)

\(\hbox {L}_{2^{\prime }}\) :

Lower plate reflect to module height (m)

\(A_{r2}\) :

Reflection area of lower reflector \((\hbox {m}^{2})\)

\(\hbox {G}_{\mathrm{r1\_c}}\) :

Reflection solar radiation of upper plate \((\hbox {J/m}^{2})\)

\(\hbox {G}_{\mathrm{r1}}\) :

Receiving solar radiation of upper reflector \((\hbox {J/m}^{2})\)

\(\hbox {L}_{1}^{{\prime }{\prime }}\) :

Upper plate reflect to module lengthen width (m)

\(\hbox {G}_{\mathrm{r2\_c}}\) :

Reflection solar radiation of lower plate \((\hbox {J/m}^{2})\)

\(\hbox {G}_{\mathrm{r2}}\) :

Receiving solar radiation of lower reflector \((\hbox {J/m}^{2})\)

\(\hbox {L}_{2}^{{\prime }{\prime }}\) :

Lower plate reflect to module lengthen width (m)

C:

Concentration ratio (–)

S/N:

Signal to noise ratios

n:

Experimental numbers

y:

Experimental results

Y:

Principal components

\(\hbox {Y}_{\mathrm{k}}\) :

Matrix of k row vectors

\(\hbox {C}_{\mathrm{k}}\) :

covariance matrix

x:

Factor level

\(\uprho \) :

Reflection coefficient of reflector (–)

\(\upalpha \) :

Elevation angle of sun \(({^\circ })\)

\(\upbeta \) :

Collector inclination \(({^\circ })\)

\(\upalpha _{1}\) :

Inclination of upper reflector \(({^\circ })\)

\(\uptau \) :

Included angle between upper reflected light and collector \(({^\circ })\)

\(\upalpha _{2}\) :

Inclination of lower reflector \(({^\circ })\)

\(\upchi \) :

Included angle between lower reflected light and collector \(({^\circ })\)

\(\upbeta _{0}\) :

Regression coefficient

References

  • Bollentin, J. W., & Wilk, R. D. (1995). Modeling the solar irradiation on flat plate collectors augmented with planar reflectors. Solar Energy, 55, 343–354.

    Article  Google Scholar 

  • Calise, F., d’Accadia, M. D., Palombo, A., & Vanoli, L. (2013). Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors. Energy, 61, 72–86.

    Article  Google Scholar 

  • Chang, C. (2012). Collaborative decision making algorithm for selection of optimal wire saw in photovoltaic wafer manufacture. Journal of Intelligent Manufacturing, 23, 533–539.

    Article  Google Scholar 

  • Çiçek, A., Kivak, T., & Ekici, E. (2013). Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-013-0783-5.

    Google Scholar 

  • He, W., Zhang, Y., & Ji, J. (2011). Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water. Applied Thermal Engineering, 31, 3369–3376.

    Article  Google Scholar 

  • Huang, B. J., Lin, T. H., Hung, W. C., & Sun, F. S. (2001). Performance evaluation of solar photovoltaic/thermal systems. Solar Energy, 70, 443–448.

    Article  Google Scholar 

  • Ibrahim, A., Othman, M, Y., Ruslan, M, H., Mat, S., & Sopinan, K. (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 15, 352–365.

    Article  Google Scholar 

  • Kostic, L. T., Pavlovic, T. M., & Pavlovic, Z. T. (2010). Optimal design of orientation of PV/T collector with reflectors. Applied Energy, 87, 3023–3029.

    Article  Google Scholar 

  • Kreith, F., & Kreider, J. F. (1978). Principles of solar engineering. Colorado: Hemisphere.

    Google Scholar 

  • Kumar, R., Kaushink, S. C., & Garg, H. P. (1995). Analytical study of collector solar-gain enhancement by multiple reflectors. Energy, 20, 511–522.

    Article  Google Scholar 

  • Kuo, C. F. J., Su, T. L., Jhang, P. R., Huang, C. Y., & Chiu, C. H. (2011). Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing. Energy, 36, 3554–3562.

    Article  Google Scholar 

  • Kuo, C. F. J., Dewantoro, G., & Huang, C. C. (2013). Optimization of injection-molded light guide plate with microstructures by using reciprocal comparisons. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-013-0826-y.

    Google Scholar 

  • Kuo, C. F. J., Lan, W. L., Chang, Y. C., & Lin, K. W. (2014). The preparation of organic light-emitting diode encapsulation barrier layer by low-temperature plasma-enhanced chemical vapor deposition–a study on the SiOxNy film parameter optimization. Journal of Intelligent Manufacturing, 3, 1–2. doi:10.1007/s10845-014-0893-8.

    Google Scholar 

  • Lin, H. T., & Huang, K. T. (2005). The Research and application of typical meteorological years of Taiwan. Journal of Architecture, 53, 79–94.

  • Muhammad, N., Manurung, Y., Jaafar, R., Abas, S., Tham, G., & Haruman, E. (2013). Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology. Journal of Intelligent Manufacturing, 24, 1175–1183.

  • Pandey, R. K., Panda, S. S., Zain, A. M., Radzi, N. M., & Othman, M. R. (2013). Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. Journal of Intelligent Manufacturing, 25, 99–107. doi:10.1007/s10845-013-0844-9.

    Google Scholar 

  • Robles-Ocampo, B., Ruiz-Vasquezb, E., Canseco-Sanchez, H., Cornejo-Mezac, R. C., Trapaga-Martinezd, G., Garcia-Rodrigueza, F. J., et al. (2007). Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector. Solar Energy Materials and Solar Cells, 91, 1966–1971.

    Article  Google Scholar 

  • Sibalija, T., & Majstorovic, V. (2012). An integrated approach to optimize parameter design of multi-response processes based on Taguchi method and artificial intelligence. Journal of Intelligent Manufacturing, 23, 1511–1528.

    Article  Google Scholar 

  • Souliotis, M., Quinlan, P., Smyth, M., Tripanagnostopoulos, Y., Zacharopoulos, A., Ramirez, M., et al. (2011). Heat retaining integrated collector storage solar water heater with asymmetric CPC reflector. Solar Energy, 85, 2474–2487.

    Article  Google Scholar 

  • Tiwari, A., & Sodha, M. S. (2006). Performance evaluation of solar PV/T system: An experimental validation. Solar Energy, 80, 751–759.

    Article  Google Scholar 

  • Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72, 217–234.

    Article  Google Scholar 

  • Tyagi, V. V., Kaushik, S. C., & Tyagi, S. K. (2012). Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Solar Energy, 16, 1383–1398.

    Google Scholar 

  • Vadde, K. K., Syrotiuk, V. R., & Montgomery, D. C. (2006). Optimizing protocol interaction using response surface methodology. IEEE Transactions on Mobile Computing, 5, 627–639.

    Article  Google Scholar 

  • Yang, Y., Shih, C., & Fung, R. (2014). Multi-objective optimization of the light guide rod by using the combined Taguchi method and grey relational approach. Journal of Intelligent Manufacturing, 25, 99–107.

    Article  Google Scholar 

  • Zainal, N., Zain, A. M., Radzi, N. M., & Othman, M. R. (2013). Glowworm swarm optimization of machining parameters combined Taguchi method and grey relational approach. Journal of Intelligent Manufacturing, 25, 99–107. doi:10.1007/s10845-014-0914-7.

    Google Scholar 

  • Zondag, H. A., de Vries, D. W., van Helden, W. G. J., van Zolingen, R. J. C., & van Steenhoven, A. A. (2002). The thermal and electrical yield of a PV–thermal collector. Solar Energy, 72, 113–128.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Bureau of Energy, Ministry of Economic Affairs, Republic of China, under the Grant No. 102-E0608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Feng Jeffrey Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CF.J., Syu, SS., Shih, CY. et al. Optimization and practical verification of system configuration parameter design for a photovoltaic thermal system combined with a reflector. J Intell Manuf 28, 1017–1029 (2017). https://doi.org/10.1007/s10845-015-1043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1043-7

Keywords

Navigation