Skip to main content
Log in

Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper deals with the mathematical modelling of a scheduling problem in a heterogeneous CPU/FPGA architecture with heterogeneous communication delays in order to minimize the makespan, \(C_{max}\). This study was motivated by the quality of the available solvers for Mixed Integer Program. The proposed model includes the communication delay constraints in a heterogeneous case, depending on both tasks and computing units. These constraints are linearized without adding any extra variables and the obtained linear model is reduced to speed-up the solving with CPLEX up to 60 times. Computational results show that the proposed model is promising. For an average sized problem of up to 50 tasks and five computing units the solving time under CPLEX is a few seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Airbus Helicopters is the leader in civil and military helicopter manufacturing. http://www.airbushelicopters.com.

References

  • Ait El Cadi, A., (2004). Automatisation de la parallélisation de systèmes complexes avec application l’environnement Matlab/Simulink., Thèse (M.Sc.A.)-École Polytechnique de Montréal.

  • Ali, H., & El-Rewini, H., (1990). An optimal algorithm for scheduling interval ordered tasks with communication on N processor, University of Nebraska at Omaha, Math. And Computer Science Department, Technical. Report, 9120

  • Baker, K. R., & Trietsch, D. (2009). Principles of sequencing and scheduling. London: Wiley.

    Book  Google Scholar 

  • Banharnsakun, A., Sirinaovakul, B., & Achalakul, T. (2012). Job shop scheduling with the best-so-far ABC. Engineering Applications of Artificial Intelligence, 25(3), 583593.

    Article  Google Scholar 

  • Cakici, E., & Mason, S. J. (2007). Parallel machine scheduling subject to auxiliary resource constraints. Production Planning and Control, 18, 217225.

    Article  Google Scholar 

  • Catalyurek, U. V., Boman, E. G., Devine, K. D., Bozda, D., Heaphy, R. T., & Riesen, L. A. (2009). A repartitioning hypergraph model for dynamic load balancing. Journal of Parallel and Distributed Computing, 69, 711–724.

    Article  Google Scholar 

  • Chen, W. H., & Lin, C. S. (2000). A hybrid heuristic to solve a task allocation problem. Computers and Operations Research, 27(3), 287–303.

    Article  Google Scholar 

  • Chrétienne, P., & Picouleau, C. (1995). Scheduling with communication delays: A survey. In P. Chrétienne, E. G. Coffman, J. K. Lenstra, & Z. Liu (Eds.), Scheduling theory and its applications (p. 6590). New York: Wiley.

    Google Scholar 

  • Darte, A., Robert, Y., & Vivien, F. (2000). Scheduling and automatic parallelization. Boston: Birkhäuser.

    Book  Google Scholar 

  • Dauzère-Pérès, S., & Sevaux, M. (2003). Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine. Naval Research Logistics, 50(3), 273288.

    Article  Google Scholar 

  • Davidović, T., Liberti, L., Maculan, N., & Mladenović, N., (2007). Towards the optimal solution of the multiprocessor scheduling problem with communication delays. In MISTA proceedings.

  • Davidović, T., Hansen, P., & Mladenović, N. (2005). Permutation-based genetic, tabu and variable neigh-borhood search heuristics for multiprocessor scheduling with communication delays. Asia-Pacific Journal of Operational Research, 22(3), 297326.

    Google Scholar 

  • El-Rewini, H., Ali, H. H., & Lewis, T. G. (1994). Task scheduling in parallel and distributed systems. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Flynn, M. (1972). Some computer organizations and their effectiveness. IEEE Transactions on Computers, 100(9), 948–960.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Fran-cisco: WH Freeman & Co.

    Google Scholar 

  • Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849866.

    Article  Google Scholar 

  • Hao, X., Gen, M., Lin, L., & Suer, G. A. (2015). Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem. Journal of Intelligent Manufacturig. doi:10.1007/s10845-014-1026-0.

  • Harris, J. M. (2000). Combinatorics and graph theory. New York: Springer.

    Book  Google Scholar 

  • Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained oroject scheduling problem. European Journal of Operational Research, 207, 1–14.

    Article  Google Scholar 

  • Huong, G. N. T., Na, Y., & Kim, S. W. (2011). Applying frame layout to hardware design in FPGA for seamless support of cross calls in CPU–FPGA coupling architecture. Microprocessors and Microsystems, 35, 462–472.

    Article  Google Scholar 

  • Hwang, R., Gen, M., & Katayama, H. (2008). A comparison of multiprocessor task scheduling algorithms with communication costs. Computers & Operations Research, 35, 976993.

    Article  Google Scholar 

  • Isaak, G. (1994). Scheduling rooted forests with communication delays. Order, 11, 309316.

    Article  Google Scholar 

  • Jong-Kook, K., Shivle, S., Siegel, H. J., Maciejewski, A. A., Braun, T. D., Schneider, M., et al. (2007). Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous environment. Journal of Parallel and Distributed Computing, 67, 154169.

    Google Scholar 

  • Knuth, D. E. (1997). The art of computer programming (3rd ed., Vol. 1). Boston: Addison-Wesley.

    Google Scholar 

  • Koné, O., Artigues, C., Lopez, P., & Mongeau, M. (2011). Event-based MILP models for resource-constrained project scheduling problems. Computers & Operations Research, 38, 3–13.

    Article  Google Scholar 

  • Korkhov, V. V., Moscicki, J. T., & Krzhizhanovskaya, V. V. (2009). Dynamic workload balancing of parallel applications with user-level scheduling on the grid. Future Generation Computer Systems, 25, 28–34.

    Article  Google Scholar 

  • Long, Q., Lin, J., & Sun, Z. (2011). Agent scheduling model for adaptive dynamic load balancing in agent-based distributed simulations. Simulation Modelling Practice and Theory, 19, 1021–1034.

    Article  Google Scholar 

  • Luo, P., L, K., & Shi, Z. (2007). A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems. Journal of Parallel and Distributed Computing, 67, 695714.

    Article  Google Scholar 

  • Luo, H., Zhang, A., & Huang, G. Q. (2013). Active scheduling for hybrid flowshop with family setup time and inconsistent family formation. Journal of Intelligent Manufacturing, 26, 1–19.

    Google Scholar 

  • Murty, K. G. (1994). Operations research: Deterministic optimization models. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Pinedo, M. (2002). Scheduling: Theory, algorithms, and systems (2nd ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Prastein, M., (1987). Precedence-constrained scheduling with minimum time and communication, MS Thesis, University of Illinois at Urbana-Champaign.

  • Rayward-Smith, V. J. (1987). UET scheduling with unit interprocessor communication delays. Discrete Applied Mathematics, 18, 557.

    Article  Google Scholar 

  • Sousa, J. P., & Wolsey, L. A. (1992). A time-indexed formulation of nonpreemptive single machine scheduling problems. Mathematical Programming, 54, 353367.

    Article  Google Scholar 

  • Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. Computers & Industrial Engineering, 58, 785800.

    Article  Google Scholar 

  • Urban, T. L. (1998). Note. Optimal balancing of U-shaped assembly lines. Management Science, 44(5), 738–741.

    Article  Google Scholar 

  • Vázquez, E. P., Calvo, M. P., & Ordóñez, P. M. (2013). Learning process on priority rules to solve the RCMPSP. Journal of Intelligent Manufacturing, 26, 1–16.

    Google Scholar 

  • Venugopalan, S., & Sinnen, O. (2012). Optimal linear programming solutions for multiprocessor scheduling with communication delays. In Y. Xiang, I. Stojmenovic, B. O. Apduhan, G. Wang, K. Nakano, & A. Zomaya (Eds.), Algorithms and architectures for parallel processing (Vol. 7439, p. 129138). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Zhang, S., & Wong, T. N. (2014). Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-1023-3.

  • Zhang, W., Xu, W., Liu, G., & Gen, M. (2015). An effective hybrid evolutionary algorithm for stochastic multiobjective assembly line balancing problem. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1037-5.

  • Zhang, W., Gen, M., & Jo, J. B. (2014). Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem. Journal of Intelligent Manufacturing, 25(5), 881897.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessamad Ait El Cadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait El Cadi, A., Souissi, O., Ben Atitallah, R. et al. Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays. J Intell Manuf 29, 629–640 (2018). https://doi.org/10.1007/s10845-015-1075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1075-z

Keywords

Navigation