Skip to main content
Log in

An approach to multiple fault diagnosis using fuzzy logic

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The development of systems capable of diagnosing new and multiple faults in industrial systems is an active research topic. In this paper a model-based diagnostic system capable of diagnosing new and multiple faults using fuzzy logic as a fundamental tool is proposed. Also, the wavelet transform is used for isolating noise present in measurements. The proposed model was applied to the Continuously-Stirred Tank Heater model benchmark. The results demonstrate the feasibility of the proposed model, improving the robustness in the diagnostic, without loss of sensitivity to incipient or small magnitude faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CSTH:

Continuously-Stirred Tank Heater model

CW:

Cold water

DWT:

Discrete wavelet transform

FDI:

Fault detection and isolation

HW:

Hot water

LTI:

Linear time-invariant systems

MRA:

Multi-resolution analysis

PI:

Proportional-integral

SCADA:

Supervisory control and data adquisition

SLAT:

Single location at a time

WT:

Wavelet transform

References

  • Bachschmid, N., Pennacchi, P., & Vania, A. (2002). Identification of multiple faults in rotor systems. Journal of Sound and Vibration, 254, 327–366.

    Article  Google Scholar 

  • Bartenstein, T., Sliwinski, D., & Huisman, D. H. (2001). Diagnosing combinational logic de-signs using the single location at-a-time (slat) paradigm. In Proceedings of IEEE international test conference (ITC), Baltimore, USA (pp. 287–287).

  • Bedoya, C., Uribe, C., & Isaza, C. (2012). Unsupervised feature selection based on fuzzy clustering for fault detection of the Tennessee Eastman process. In Advances in Artificial Intelligence. Springer-Verlag. LNAI (Vol. 7637, pp. 350–360).

  • Botía, J., Isaza, C., Kempowsky, T., et al. (2013). Automaton based on fuzzy clustering methods for monitoring industrial processes. Engineering Applications of Artificial Intelligence, 26, 1211–1220.

    Article  Google Scholar 

  • Camps Echevarría, L., Llanes-Santiago, O., & Silva Neto, A. J. (2010). An approach for fault diagnosis based on bio-inspired strategies. Studies in Computational Intelligence, 284, 53–63.

    Google Scholar 

  • Ding, S. X. (2008). Model-based fault diagnosis techniques. London: Springer.

    Google Scholar 

  • Fantuzzi, C., Simani, S., & Patton, R. J. (2002). Model based fault diagnosis in dynamic systems using identification techniques. Berlin: Springer.

    Google Scholar 

  • Gertler, J. (2000). Designing dynamic consistency relations for fault detection and isolation. International Journal of Control, 73, 720–732.

    Article  Google Scholar 

  • Heng, A., Zhang, S., Tan, A., et al. (2009). Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 23, 724–739.

    Article  Google Scholar 

  • Hwang, I., Kim, S., Kim, Y., & Seah, C. E. (2010). A survey of fault detection, isolation, and reconfiguration methods. IEEE Transactions on Control Systems Technology, 18, 636–656.

    Article  Google Scholar 

  • Isermann, R. (2011). Fault-diagnosis applications: Model-based condition monitoring: Actuators, drives, machinery, plants, sensors, and fault-tolerant systems. London: Springer.

    Google Scholar 

  • Kunpeng, Z., San, W., & Soon, H. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools & Manufacture, 49, 537–553.

    Article  Google Scholar 

  • Mendonça, L. F., Sousa, J. M., & Sá da Costa, J. M. (2009). An architecture for fault detection and isolation based on fuzzy methods. Expert Systems with Applications, 36, 1092–1104.

    Article  Google Scholar 

  • Miguel, L. J. D., & Blázquez, L. F. (2005). Fuzzy logic-based decision-making for fault diagnosisin a DC motor. Engineering Applications of Artificial Intelligence, 18, 423–450.

    Article  Google Scholar 

  • Nooria, B. (2015). Developing a CBR system for marketing mix planning and weighting method selection using Fuzzy AHP. Applied Artificial Intelligence, 29, 1–32.

    Article  Google Scholar 

  • Perzyk, M., Kochanski, A., Kozlowski, J., Soroczynski, A., & Biernacki, R. (2014). Comparisonof data mining tools for significance analysis of process parameters in applications toprocess fault diagnosis. Information Sciences, 259, 380–392.

    Article  Google Scholar 

  • Rengaswamy, R., Dash, S., Maurya, M. R., & Venkatasubramanian, V. (2004). A novel interval-halving framework for automated identification of process trends. AIChE Journal, 50, 149–162.

    Article  Google Scholar 

  • Ruan, S., Zhou, Y., Feili, Y., Pattipati, K. R., Willett, P., & Patterson-Hine, A. (2009). Dynamic multiple-fault diagnosis with imperfect tests. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 39, 1224–1236.

    Article  Google Scholar 

  • Simani, S., & Patton, R. J. (2008). Fault diagnosis of an industrial gas turbine prototype using a system identification approach. Control Engineering Practice, 16, 769–786.

    Article  Google Scholar 

  • Simani, S., Farsoni, S., & Castaldi, P. (2015). Wind turbine simulator fault diagnosis via fuzzy modelling and identification techniques. Sustainable Energy, Grids and Networks, 1, 45–52.

    Article  Google Scholar 

  • Sobhani-Tehrani, E., Talebi, H. A., & Khorasani, K. (2014). Hybrid fault diagnosis of nonlinear systems using neural parameter estimators. Neural Networks, 50, 12–32.

    Article  Google Scholar 

  • Thornhill, N. F., Patwardhan, S. C., & Shah, S. L. (2008). A continuous stirred tank heater simulation model with applications. Journal of Process Control, 18, 347–360.

    Article  Google Scholar 

  • Uribe, C., & Isaza, C. (2011). Unsupervised feature selection based on fuzzy partition optimization for industrial processes monitoring. In IEEE international conference on computational intelligence for measurement systems and applications (CIMSA), Ottawa, Canada (pp. 1–5).

  • Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003a). A review of process fault detection and diagnosis, part 1: Quantitative model-based methods. Computers and Chemical Engineering, 27, 293–311.

    Article  Google Scholar 

  • Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003b). A review of process fault detection and diagnosis, part 2: Qualitative models and search strategies. Computers and Chemical Engineering, 27, 313–326.

    Article  Google Scholar 

  • Vong, C. H., Wong, P. K., & Wong, K. I. (2014). Simultaneous-fault detection based on qualitative symptom descriptions for automotive engine diagnosis. Applied Soft Computing, 22, 238–248.

    Article  Google Scholar 

  • Wang, Z., Marek-Sadowska, M., Tsai, K. H., & Rajski, J. (2006). Analysis and methodology for multiple-fault diagnosis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25, 558–575.

    Article  Google Scholar 

  • Wu, J. D., & Hsu, Ch. (2009). Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference. Expert Systems with Applications, 36, 3785–3794.

    Article  Google Scholar 

  • Zhang, J., Ma, W., Lin, J., Ma, L., & Jia, X. (2015). Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence. Measurement, 59, 73–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Rodríguez Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Ramos, A., Domínguez Acosta, C., Rivera Torres, P.J. et al. An approach to multiple fault diagnosis using fuzzy logic. J Intell Manuf 30, 429–439 (2019). https://doi.org/10.1007/s10845-016-1256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1256-4

Keywords

Navigation