Skip to main content
Log in

An embedded self-adapting network service framework for networked manufacturing system

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

To improve the self-adapting ability and real-time performance of client/server based networked manufacturing system (NMS), this paper introduces the universal plug and play (UPnP), an intelligent network middleware, into networked manufacturing area, and proposes an embedded self-adapting network framework and related service methods. Referring to small world model and scale-free principles, a complex network model oriented to digital manufacturing is set up. Based on the model, an improved entropy vector projection algorithm is proposed to evaluate the network complexity and reveal the evolution regulars. Then, the self-adapting services for NMS are performed by UPnP service-calling and inter-process communication methods. Finally, the case studies and industrial field experiments verify the effectiveness of the proposed service framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

API:

Application program interfaces

CNC:

Computer numerical control

C/S:

Client/server

CP:

Control point

CP-DCGM:

CP display/control GUI sub-module

CPLD:

Complex programmable logic device

DAI:

Distributed artificial intelligence

DCP:

Device control protocol

DDCM:

Device data collection module

DP:

Device point

DP-DSCM:

DP data and status collection sub-module

DS:

Data service

DSCP:

Data service center point

DSCP-DSQM:

DSCP data storage and query sub-module

DSP:

Digital signal processor

DSSM:

Data storage service module

EDCS:

Embedded data collection system

EPA:

Ethernet for plant automation

EVP:

Entropy vector projection

FW/NAT:

Firewall/network address translation

GA:

Genetic algorithm

IPC:

Inter-process communication

LPC:

Iower position computer

MCC:

Monitoring and control center

ML-KNN:

Multi label k nearest neighbor

MW:

Manufacturing workshops

NMM:

Network middleware module

NMS:

Networked manufacturing system

NSC:

Network service center

P2P:

Peer-to-peer

PCT:

Parameter configuration table

PDP:

Parameter data package

PSO:

Particle swarm optimization

RBAC:

Role-based access control

SLOF:

Shengli oil field

SPFC:

Shenyang pump factory corporation

SWM:

Small world model

UMM:

User monitoring module

UPC:

Upper position computer

UPnP:

Universal plug and play

WISCO:

Wuhan iron and steel corporation

XML:

Extensible markup language

References

  • Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Google Scholar 

  • Barabasi, A. L., & Bonabeau, E. (2003). Scale-free networks. Scientific American, 288(5), 60–69.

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports—Review Section of Physics Letters, 424(4–5), 175–308.

    Google Scholar 

  • Bonnard, R., Mognol, P., & Hascoet, J. Y. (2010). A new digital chain for additive manufacturing processes. Virtual and Physical Prototyping, 5(2), 75–88.

    Google Scholar 

  • Cao, Y., Wang, S. L., Kang, L., Li, C. S., & Guo, L. (2015). Study on machining service modes and resource selection strategies in cloud manufacturing. International Journal of Advanced Manufacturing Technology, 81(1–4), 597–613.

    Google Scholar 

  • Cecilio, J., & Furtado, P. (2014). Architecture for uniform (re)configuration and processing over embedded sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10(1), 53–60.

    Google Scholar 

  • Chan, F. T., Zhang, J., & Li, P. (2003). Agent and CORBA based application integration platform for an agile manufacturing environment. International Journal of Advanced Manufacturing Technology, 21(6), 460–468.

    Google Scholar 

  • Chan, F. T. S., Swarnkar, R., & Tiwari, M. K. (2007). Infrastructure for co-ordination of multi-agents in a network-based manufacturing system. International Journal of Advanced Manufacturing Technology, 31(9–10), 1028–1033.

    Google Scholar 

  • Chen, J. L., Xu, F., Tan, D. P., Shen, Z., Zhang, L. B., & Ai, Q. L. (2015). A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Applied Energy, 141, 106–118.

    Google Scholar 

  • Criado, R., Romance, M., & Sánchez, A. (2012). Interest point detection in images using complex network analysis. Journal of Computational and Applied Mathematics, 236(12), 2975–2980.

    Google Scholar 

  • Dyke, K. J., Schofield, N., & Barnes, M. (2010). The impact of transport electrification on electrical networks. IEEE Transactions on Industrial Electronics, 57(12), 3917–3926.

    Google Scholar 

  • Frayret, J. M., D’Amours, S., Montreuil, B., & Cloutier, L. (2001). A network approach to operate agile manufacturing systems. International Journal of Production Economics, 74(1–3), 239–259.

    Google Scholar 

  • Gaonkar, R., & Viswanadham, N. (2001). Collaboration and information sharing in global contract manufacturing networks. IEEE/ASME Transactions on Mechatronics, 6(4), 366–376.

    Google Scholar 

  • Huang, C. Y., Cheng, K., & Holt, A. (2007). An integrated manufacturing network management framework by using mobile agent. International Journal of Advanced Manufacturing Technology, 32(7–8), 822–833.

    Google Scholar 

  • Ji, S. M., Xiao, F. Q., & Tan, D. P. (2010). Analytical method for softness abrasive flow field based on discrete phase model. Science China—Technological Sciences, 53(10), 2867–2877.

    Google Scholar 

  • Lai, C. F., Chang, S. Y., Huang, Y. M., Park, J. H., & Chao, H. C. (2011). A portable UPnP-based high performance content sharing system for supporting multimedia devices. Journal of Supercomputing, 55(2), 269–283.

    Google Scholar 

  • Li, C., Ji, S. M., & Tan, D. P. (2012). Study on machinability and the wall region of solid–liquid two phase softness abrasive flow. International Journal of Advanced Manufacturing Technology, 61(9–12), 975–987.

    Google Scholar 

  • Li, C., Ji, S. M., & Tan, D. P. (2013). Multiple-loop digital control method for 400 Hz inverter system based on phase feedback. IEEE Transactions on Power Electronics, 28(1), 408–417.

    Google Scholar 

  • Liang, G. H., Mei, D. Q., Wang, Y. C., & Chen, Z. C. (2014). Modeling and analysis of a flexible capacitive tactile sensor array for normal force measurement. IEEE Sensors Journal, 14(11), 4095–4103.

    Google Scholar 

  • Liang, G. H., Wang, Y. C., Mei, D. Q., Xi, K. L., & Chen, Z. C. (2016). An analytical model for studying the structural effects and optimization of a capacitive tactile sensor array. Journal of Micromechanics and Microengineering, 26(4), 045007.

    Google Scholar 

  • Luo, Y. C., Zhou, M. C., & Caudill, R. J. (2001). An integrated E-supply chain model for agile and environmentally conscious manufacturing. IEEE/ASME Transactions on Mechatronics, 6(4), 377–386.

    Google Scholar 

  • Masood, T., Weston, R. H. (2013). Modeling framework to support decision-making in manufacturing enterprises. Advances in Decision Sciences, 2013, 234939. doi:10.1155/2013/234939.

    Google Scholar 

  • Nestinger, S. S., Chen, B., & Cheng, H. H. (2010). A mobile agent-based framework for flexible automation systems. IEEE/ASME Transactions on Mechatronics, 15(6), 942–951.

    Google Scholar 

  • Panescu, D., & Pascal, C. (2012). On a holonic adaptive plan-based architecture: Planning scheme and holons’ life periods. International Journal of Advanced Manufacturing Technology, 63(5–8), 753–769.

    Google Scholar 

  • Perez, T., Zamora, J., & Eguiluz, V. M. (2016). Collective intelligence: Aggregation of information from neighbors in a guessing game. PLoS One, 11(4), e0153586.

    Google Scholar 

  • Romero-Troncoso, R. J., Saucedo-Gallaga, R., Cabal-Yepez, E., Garcia-Perez, A., Osornio-Rios, R. A., Alvarez-Salas, R., et al. (2011). FPGA-based online detection of multiple combined faults in induction motors through information entropy and fuzzy inference. IEEE Transactions on Industrial Electronics, 58(11), 5263–5270.

    Google Scholar 

  • Sarraj, R., Ballot, E., Pan, S., & Montreuil, B. (2014). Analogies between Internet network and logistics service networks: Challenges involved in the interconnection. Journal of Intelligent Manufacturing, 25(6), 1207–1219.

    Google Scholar 

  • Shen, W. M., Maturana, F., & Norrie, D. H. (2000). MetaMorph II: An agent-based architecture for distributed intelligent design and manufacturing. Journal of Intelligent Manufacturing, 11(3), 237–251.

    Google Scholar 

  • Shekar, B. H., Sharmila, K. M., Mestetskiy, L. M., & Dyshkant, N. F. (2011). Face recognition using kernel entropy component analysis. Neurocomputing, 74(6), 1053–1057.

    Google Scholar 

  • Sun, G. D., Chen, Y. P., Zhou, Z. D., & Min, Z. B. (2008). A configurable access control system for networked manufacturing monitoring using XML. International Journal of Advanced Manufacturing Technology, 39(11–12), 1252–1261.

    Google Scholar 

  • Tan, D. P., Li, P. Y., & Pan, X. H. (2008). Intelligent industry monitoring network architecture UPnP based. Chinese Journal of Electronics, 17(4), 607–610.

    Google Scholar 

  • Tan, D. P., Li, P. Y., & Pan, X. H. (2009). Application of improved HMM algorithm in slag detection system. International Journal of Iron and Steel Research, 16(1), 1–6.

    Google Scholar 

  • Tan, D. P., Ji, S. M., Li, P. Y., & Pan, X. H. (2010). Development of vibration style ladle slag detection method and the key technologies. Science China—Technological Sciences, 53(9), 2378–2387.

    Google Scholar 

  • Tan, D. P., Ji, S. M., & Jin, M. S. (2013a). Intelligent computer-aided instruction modeling and a method to optimize study strategies for parallel robot instruction. IEEE Transactions on Education, 56(3), 268–273.

    Google Scholar 

  • Tan, D. P., Li, P. Y., Ji, Y. X., Wen, D. H., & Li, C. (2013b). SA-ANN-based slag carry-over detection method and the embedded WME platform. IEEE Transactions on Industrial Electronics, 60(10), 4702–4713.

    Google Scholar 

  • Tan, D. P., & Zhang, L. B. (2014). A WP-based nonlinear vibration sensing method for invisible liquid steel slag detection. Sensors and Actuators B—Chemical, 202, 1257–1269.

    Google Scholar 

  • Tan, D. P., Ji, S. M., & Fu, Y. Z. (2015). An improved soft abrasive flow finishing method based on fluid collision theory. International Journal of Advanced Manufacturing Technology,. doi:10.1007/s00170-015-8044-8.

    Article  Google Scholar 

  • Tipsuwan, Y., & Chow, M. Y. (2004). On the gain scheduling for networked PI controller over IP network. IEEE/ASME Transactions on Mechatronics, 9(3), 491–498.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Google Scholar 

  • Wei, X., Song, F. H., & Ye, F. F. (2014). Order allocation for multiple supply-demand networks within a cluster. Journal of Intelligent Manufacturing, 25(6), 1367–1376.

    Google Scholar 

  • Wookey, L., Leung, C. K., & Lee, J. J. H. (2011). Mobile web navigation in digital ecosystems using rooted directed trees. IEEE Transactions on Industrial Electronics, 58(6), 2154–2162.

  • Xia, X. T., Chen, L., & Meng, F. N. (2011). Information entropy of rolling bearing friction torque as data series. Applied Mechanics and Materials, 44–47, 1115–1119.

  • Zheng, H., Niu, Y. G., & Ciardo, G. (2011). Modeling and analysis of UPnP AV media player system based on Petri nets. International Journal of Systems Science, 42(9), 1573–1580.

    Google Scholar 

  • Zheng, N., Wu, Z., Lin, M., & Yang, L. T. (2010). Enhancing battery efficiency for pervasive health-monitoring systems based on electronic textiles. IEEE Transactions on Information Technology in Biomedicine, 14(2), 350–359.

    Google Scholar 

  • Zheng, N. G., Su, L. J., Zhang, D. Q., Gao, L. Q., Yao, M., & Wu, Z. H. (2015). A computational model for ratbot locomotion based on cyborg intelligence. Neurocomputing, 170, 92–97.

    Google Scholar 

  • Zhou, G. Y., Li, C. R., Li, T. T., Yang, Y., Wang, C., He, F. J., et al. (2016). Outer synchronization investigation between WS and NW small-world networks with different node numbers. Physica A—Statistical Mechanics and its Applications, 457, 506–513.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No. U1509212; Natural Science Foundation of China under Grant Nos. 51375446, 51275470; the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists under Grant No. LR16E050001; the Visiting Scholar Foundation of the State Key Lab of Digital Manufacturing Equipment and Technology under Grant No. DMETKF2013006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Zhang, L. & Ai, Q. An embedded self-adapting network service framework for networked manufacturing system. J Intell Manuf 30, 539–556 (2019). https://doi.org/10.1007/s10845-016-1265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1265-3

Keywords

Navigation