Skip to main content

Advertisement

Log in

Industrial wearable system: the human-centric empowering technology in Industry 4.0

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The Industry 4.0 program and corresponding international initiatives continue to transform the industrial workforce and their work. The service-oriented, customer-centric and demand-driven production is pushing forward the progress of industrial automation. Even though, it does not mean that human can be fully replaced by machines/robots. There is an increasing awareness that human presence is not only one type of manufacturing capability, but also contributes to the overall system’s fault tolerant. How to achieve the seamless integration between human and machines/robots and harness human’s full potential is a critical issue for the success of Industry 4.0. In this research, a human-centric empowering technology: industrial wearable system is proposed. The aim of this system is to establish a human–cyber–physical symbiosis to support real time, trusting, and dynamic interaction among operators, machines and production systems. In order to design a substantial framework, three world-leading R&D groups in this field are investigated. Five design considerations have been identified from real-life pilot projects. The future trends and research opportunities also show great promise of industrial wearable system in the next generation of manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anastasi, G., Conti, M., & Di Francesco, M. (2009). Extending the lifetime of wireless sensor networks through adaptive sleep. IEEE Transactions on Industrial Informatics, 5(3), 351–365. https://doi.org/10.1109/Tii.2009.2025863.

    Article  Google Scholar 

  • Anhalt, J., Smailagic, A., Siewiorek, D. P., Gemperle, F., Salber, D., Weber, S., et al. (2001). Toward context-aware computing: Experiences and lessons. IEEE Intelligent Systems & Their Applications, 16(3), 38–46. https://doi.org/10.1109/5254.940025.

    Article  Google Scholar 

  • Baumann, H. (2013). Order picking supported by mobile computing. Doctoral Dissertation, University of Bremen.

  • Baumann, H., Starner, T., Iben, H., Lewandowski, A., & Zschaler, P. (2011). Evaluation of graphical user-interfaces for order picking using head-mounted displays. In Proceedings of the 13th international conference on multimodal interfaces (pp. 377–384). ACM.

  • Baumann, H., Starner, T., & Zschaler, P. (2012). Studying order picking in an operating automobile manufacturing plant. In 2012 16th International symposium on wearable computers (Iswc), 112-+. https://doi.org/10.1109/Iswc.2012.24.

  • Buenaflor, C., & Kim, H. C. (2013). Six human factors to acceptability of wearable computers. International Journal of Multimedia & Ubiquitous Engineering, 8(3), 103–114.

    Google Scholar 

  • Chan, M., Esteve, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137–156. https://doi.org/10.1016/j.artmed.2012.09.003.

    Article  Google Scholar 

  • Chao, H.-C., Zeadally, S., & Hu, B. (2016). Wearable computing for health care. Journal of Medical Systems, 40(4), 87.

    Article  Google Scholar 

  • Chen, T., & Lin, C. W. (2015). Estimating the simulation workload for factory simulation as a cloud service. Journal of Intelligent Manufacturing, 28, 1–19.

    Google Scholar 

  • Coburn, J. Q., Freeman, I., & Salmon, J. L. (2017). A review of the capabilities of current low-cost virtual reality technology and its potential to enhance the design process. Journal of Computing & Information Science in Engineering, 17(3), 031013. https://doi.org/10.1115/1.4036921.

  • Dipietro, L., Sabatini, A. M., & Dario, P. (2008). A survey of glove-based systems and their applications. IEEE Transactions on Systems Man and Cybernetics Part C—Applications and Reviews, 38(4), 461–482. https://doi.org/10.1109/Tsmcc.2008.923862.

    Article  Google Scholar 

  • Fang, J., Huang, G. Q., & Li, Z. (2013). Event-driven multi-agent ubiquitous manufacturing execution platform for shop floor work-in-progress management. International Journal of Production Research, 51(4), 1168–1185. https://doi.org/10.1080/00207543.2012.693644.

    Article  Google Scholar 

  • Farella, E., Pieracci, A., Benini, L., Rocchi, L., & Acquaviva, A. (2008). Interfacing human and computer with wireless body area sensor networks: The WiMoCA solution. Multimedia Tools and Applications, 38(3), 337–363. https://doi.org/10.1007/s11042-007-0189-5.

    Article  Google Scholar 

  • Galzarano, S., Giannantonio, R., Liotta, A., & Fortino, G. (2016). A task-oriented framework for networked wearable computing. IEEE Transactions on Automation Science & Engineering, 13(2), 621–638.

    Article  Google Scholar 

  • Gorecky, D., Schmitt, M., Loskyll, M., & Zuhlke, D. (2014). Human–machine–interaction in the Industry 4.0 era. 2014 12th IEEE international conference on industrial informatics (Indin) (pp. 289–294).

  • Guo, A. H., Wu, X. L., Shen, Z. Y., Starner, T., Baumann, H., & Gilliland, S. (2015). Order picking with head-up displays. Computer, 48(6), 16–24.

    Article  Google Scholar 

  • Hall, S. P., & Anderson, E. (2009). Operating systems for mobile computing. Journal of Computing Sciences in Colleges, 25(2), 64–71.

    Google Scholar 

  • Hao, Y. Q., & Helo, P. (2017). The role of wearable devices in meeting the needs of cloud manufacturing: A case study. Robotics and Computer-Integrated Manufacturing, 45, 168–179. https://doi.org/10.1016/j.rcim.2015.10.001.

    Article  Google Scholar 

  • Hofmann, E., & Rusch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23–34. https://doi.org/10.1016/j.compind.2017.04.002.

    Article  Google Scholar 

  • Hung, K., Zhang, Y.-T., & Tai, B. (2004). Wearable medical devices for tele-home healthcare. In Engineering in medicine and biology society, 2004, IEMBS’04. 26th Annual international conference of the IEEE (Vol. 2, pp. 5384–5387). IEEE.

  • Kim, G. J., Han, S. H., Yang, H., & Cho, C. (2004). Body-based interfaces. Applied Ergonomics, 35(3), 263–274.

    Article  Google Scholar 

  • Lawo, M., Boronowsky, M., Herzog, O., & Knackfuss, P. (2007). WearIT@ work-empowering by wearable computing. EngineerIT, 3.

  • Lawo, M., Herzog, O., Boronowsky, M., & Knackfuss, P. (2011). The open wearable computing group. IEEE Pervasive Computing, 10(2), 78–81.

    Article  Google Scholar 

  • Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3(Supplement C), 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.

    Article  Google Scholar 

  • Leitao, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11–25. https://doi.org/10.1016/j.compind.2015.08.004.

    Article  Google Scholar 

  • Liao, Y. X., Deschamps, F., Loures, E. D. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0—A systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609–3629. https://doi.org/10.1080/00207543.2017.1308576.

    Article  Google Scholar 

  • Liu, M., Ma, J., Lin, L., Ge, M., Wang, Q., & Liu, C. (2017). Intelligent assembly system for mechanical products and key technology based on internet of things. Journal of Intelligent Manufacturing, 28(2), 271–299.

    Article  Google Scholar 

  • Lorenz, M., Ruessmann, M., Strack, R., Lueth, K., & Bolle, M. (2015). Man and machine in Industry 4.0: How will technology transform the industrial workforce through 2025? Boston: Boston Consulting Group.

  • Lukowicz, P., Kirstein, T., & Troster, G. (2004). Wearable systems for health care applications. Methods of Information in Medicine-Methodik der Information in der Medizin, 43(3), 232–238.

    Article  Google Scholar 

  • Lukowicz, P., Timm-Giel, A., Lawo, M., & Herzog, O. (2007). WearIT@work: Toward real-world industrial wearable computing. IEEE Pervasive Computing, 6(4), 8–13. https://doi.org/10.1109/Mprv.2007.89.

    Article  Google Scholar 

  • Luo, H., Wang, K., Kong, X. T. R., Lu, S., & Qu, T. (2016). Synchronized production and logistics via ubiquitous computing technology. Robotics and Computer-Integrated Manufacturing, 45(C), 99–115.

    Google Scholar 

  • Maurtua, I., Kirisci, P. T., Stiefmeier, T., Sbodio, M. L., & Witt, H. (2007). A wearable computing prototype for supporting training activities in automotive production. In 2007 4th International forum on applied wearable computing (IFAWC) (pp. 1–12). VDE.

  • Mrugalska, B., & Wyrwicka, M. K. (2017). Towards lean production in Industry 4.0. In 7th International conference on engineering, project, and production management (Vol. 182, pp. 466–473). https://doi.org/10.1016/j.proeng.2017.03.135.

    Article  Google Scholar 

  • Mukhopadhyay, S. C. (2014). Wearable sensors for human activity monitoring: A review. IEEE Sensors Journal, 15(3), 1321–1330.

    Article  Google Scholar 

  • News, B. (2017). Google glass smart eyewear returns. http://www.bbc.com/news/technology-40644195. Accessed 18 July 2017.

  • Ong, S. K., Yuan, M. L., & Nee, A. Y. C. (2008). Augmented reality applications in manufacturing: A survey. International Journal of Production Research, 46(10), 2707–2742. https://doi.org/10.1080/00207540601064773.

    Article  Google Scholar 

  • Paelke, V. (2014). Augmented reality in the smart factory supporting workers in an Industry 4.0. environment. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA) (pp. 1–4).

  • Pasher, E., Popper, Z., Raz, H., & Lawo, M. (2010). WearIT@ work: A wearable computing solution for knowledge-based development. International Journal of Knowledge-Based Development, 1(4), 346–360.

    Article  Google Scholar 

  • Peng, Y., Zhang, Y., Tang, Y., & Li, S. (2011). An incident information management framework based on data integration, data mining, and multi-criteria decision making. Decision Support Systems, 51(2), 316–327.

    Article  Google Scholar 

  • Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., de Amicis, R., et al. (2015). Visual computing as a key enabling technology for Industrie 4.0 and industrial internet. IEEE Computer Graphics and Applications, 35(2), 26–40.

    Article  Google Scholar 

  • Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., et al. (2016). Towards an Operator 4.0 typology: A human-centric perspective on the fourth industrial revolution technologies. In International conference on computers and industrial engineering (CIE46) proceedings.

  • Sawyer, B. D., Finomore, V. S., Calvo, A. A., & Hancock, P. A. (2014). Google glass. Human Factors the Journal of the Human Factors & Ergonomics Society, 56, 1307–1321.

    Article  Google Scholar 

  • Schmuntzsch, U., Sturm, C., & Roetting, M. (2014). The warning glove—Development and evaluation of a multimodal action-specific warning prototype. Applied Ergonomics, 45(5), 1297.

    Article  Google Scholar 

  • Siewiorek, D., Smailagic, A., & Starner, T. (2009). Wearable computers. In Human–Computer Interaction Fundamentals (pp. 271–288). US: CRC Press, Taylor & Francis Group.

  • Smailagic, A., & Siewiorek, D. (2002). Application design for wearable and context-aware computers. IEEE Pervasive Computing, 1(4), 20–29.

    Article  Google Scholar 

  • Stanford, V. (2002). Wearable computing goes live in industry. IEEE Pervasive Computing, 1(4), 14–19.

    Article  Google Scholar 

  • Starner, T. (1996). Human-powered wearable computing. IBM Systems Journal, 35(3–4), 618–629.

    Article  Google Scholar 

  • Starner, T., Mann, S., Rhodes, B., Levine, J., Healey, J., Kirsch, D., et al. (1997). Augmented reality through wearable computing. Presence-Teleoperators and Virtual Environments, 6(4), 386–398.

    Article  Google Scholar 

  • Stein, R., Ferrero, S., Hetfield, M., Quinn, A., & Krichever, M. (1998). Development of a commercially successful wearable data collection system. In Second international symposium on wearable computers. Digest of papers (pp. 18–24). IEEE.

  • Timm-Giel, A., Kuladinithi, K., Becker, M., & Görg, C. (2006). Wireless sensor networks in wearable and logistic application. 15th IST mobile & wireless communication summit. Greece.

  • Tröster, G. (2005). The agenda of wearable healthcare. IMIA Yearbook, 125–138. ster (2005). oster (2005), Wu et al. (2017)

  • Vogel-Heuser, B., & Hess, D. (2016). Guest editorial Industry 4.0—Prerequisites and visions. IEEE Transactions on Automation Science & Engineering, 13(2), 411–413.

    Article  Google Scholar 

  • Wang, R. C., Chang, Y. C., & Chang, R. S. (2009). A semantic service discovery approach for ubiquitous computing. Journal of Intelligent Manufacturing, 20(3), 327–335.

    Article  Google Scholar 

  • Weaver, K. A., Baumann, H., Starner, T., Iben, H., & Lawo, M. (2010). An empirical task analysis of warehouse order picking using head-mounted displays. In Chi2010: Proceedings of the 28th annual chi conference on human factors in computing systems (Vol. 1–4, pp. 1695–1704).

  • Wolf, K., & Willaredt, J. (2015). PickRing: Seamless interaction through pick-up detection. In Proceedings of the 6th augmented human international conference (pp. 13–20). ACM.

  • Wu, M., Song, Z., & Moon, Y. B. (2017). Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods. Journal of Intelligent Manufacturing, 1–13.

  • Wu, X., Haynes, M., Zhang, Y., Jiang, Z., Shen, Z., Guo, A., et al. (2015). Comparing order picking assisted by head-up display versus pick-by-light with explicit pick confirmation. In Proceedings of the 2015 ACM international symposium on wearable computers (pp. 133–136). ACM.

  • Yao, J. C., Schmitz, R., & Warren, S. (2005). A wearable point-of-care system for home use that incorporates plug-and-play and wireless standards. IEEE Transactions on Information Technology in Biomedicine, 9(3), 363–371. https://doi.org/10.1109/Titb.2005.854507.

    Article  Google Scholar 

  • Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2017). Review of job shop scheduling research and its new perspectives under Industry 4.0. Journal of Intelligent Manufacturing, 3, 1–22.

    Google Scholar 

  • Zhu, C., Sheng, W., & Liu, M. (2015). Wearable sensor-based behavioral anomaly detection in smart assisted living systems. IEEE Transactions on Automation Science & Engineering, 12(4), 1225–1234.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Zhejiang Provincial, Hangzhou Municipal, Lin’an City governments, ITF Innovation and Technology Support Programme of Hong Kong Government (ITP/079/16LP), HKSAR RGC GRF (No. 17212016; No. 17203117) and National Natural Science Foundation of China (No. 71671116; No. 71701079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X.T.R., Luo, H., Huang, G.Q. et al. Industrial wearable system: the human-centric empowering technology in Industry 4.0. J Intell Manuf 30, 2853–2869 (2019). https://doi.org/10.1007/s10845-018-1416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1416-9

Keywords

Navigation