Skip to main content
Log in

A comprehensive review of robotic assembly line balancing problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The research on the robotic assembly line balancing problem (RALBP) was originated for the first time nearly three decades ago. This problem is under the umbrella of the assembly line balancing problem in which robots and automated equipment are employed to take on human workers’ roles to form a flexible assembly line. In this review paper, the development and generalisation throughout the time of the RALBP are addressed. To make the review easy to comprehend and effective, the RALBP is first classified based on the types of layouts and then further dividing up according to the 4 M (Man, Machine, Material and Method) concept. The main contributions of different articles are chronologically summarised in the form of a table. Besides, the research contribution precedence diagram is used to illustrate the sequential order and linkage relationship among researches. Finally, from the findings of the review, future research directions are pinpointed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aghajani, M., Ghodsi, R., & Javadi, B. (2014). Balancing of robotic mixed-model two-sided assembly line with robot setup times. The International Journal of Advanced Manufacturing Technology, 74(5–8), 1005–1016.

    Article  Google Scholar 

  • Battaïa, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. International Journal of Production Economics, 142(2), 259–277.

    Article  Google Scholar 

  • Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing problem. Management Science, 32(8), 909–932.

    Article  Google Scholar 

  • Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 168(3), 694–715.

    Article  Google Scholar 

  • Borba, L., Ritt, M., & Miralles, C. (2018). Exact and heuristic methods for solving the robotic assembly line balancing problem. European Journal of Operational Research, 270(1), 146–156.

    Article  Google Scholar 

  • Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems. European Journal of Operational Research, 183(2), 674–693.

    Article  Google Scholar 

  • Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which model to use when? International Journal of Production Economics, 111(2), 509–528.

    Article  Google Scholar 

  • Çil, Z. A., Mete, S., & Ağpak, K. (2016). A goal programming approach for robotic assembly line balancing problem. IFAC-PapersOnLine, 49(12), 938–942.

    Article  Google Scholar 

  • Çil, Z. A., Mete, S., & Ağpak, K. (2017a). Analysis of the type II robotic mixed-model assembly line balancing problem. Engineering Optimization, 49(6), 990–1009.

    Article  Google Scholar 

  • Çil, Z. A., Mete, S., Özceylan, E., & Ağpak, K. (2017b). A beam search approach for solving type II robotic parallel assembly line balancing problem. Applied Soft Computing, 61, 129–138.

    Article  Google Scholar 

  • Dalle Mura, M., & Dini, G. (2019). Designing assembly lines with humans and collaborative robots: A genetic approach. CIRP Annals, 68(1), 1–4.

    Article  Google Scholar 

  • Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Solving a robotic assembly line balancing problem using efficient hybrid methods. Journal of Heuristics, 20(3), 235–259.

    Article  Google Scholar 

  • Gao, J., Sun, L., Wang, L., & Gen, M. (2009). An efficient approach for type II robotic assembly line balancing problems. Computers & Industrial Engineering, 56(3), 1065–1080.

    Article  Google Scholar 

  • Hong, D. S., & Cho, H. S. (1997). Generation of robotic assembly sequences with consideration of line balancing using simulated annealing. Robotica, 15(6), 663–673.

    Article  Google Scholar 

  • International Federation of Robotics (2018). Executive summary world robotics 2018 industrial robots. https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf. Accessed 1 August 2019.

  • Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 65, 256–270.

    Article  Google Scholar 

  • Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85–103). Boston, MA: Springer.

  • Kim, H., & Park, S. (1995). A strong cutting plane algorithm for the robotic assembly line balancing problem. International Journal of Production Research, 33(8), 2311–2323.

    Article  Google Scholar 

  • Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. European Journal of Operational Research, 168(3), 811–825.

    Article  Google Scholar 

  • Li, Z., Dey, N., Ashour, A. S., & Tang, Q. (2018a). Discrete cuckoo search algorithms for two-sided robotic assembly line balancing problem. Neural Computing and Applications, 30(9), 2685–2696.

    Article  Google Scholar 

  • Li, Z., Janardhanan, M. N., Tang, Q., & Nielsen, P. (2016a). Co-evolutionary particle swarm optimization algorithm for two-sided robotic assembly line balancing problem. Advances in Mechanical Engineering, 8(9), 1687814016667907.

    Google Scholar 

  • Li, Z., Janardhanan, M. N., Tang, Q., & Nielsen, P. (2018b). Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line. Engineering Optimization, 50(5), 877–893.

    Article  Google Scholar 

  • Li, Z., Tang, Q., & Zhang, L. (2016b). Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm. Journal of Cleaner Production, 135, 508–522.

    Article  Google Scholar 

  • Lopes, T. C., Sikora, C. G. S., Molina, R. G., Schibelbain, D., Rodrigues, L. C., & Magatão, L. (2017). Balancing a robotic spot-welding manufacturing line: An industrial case study. European Journal of Operational Research, 263(3), 1033–1048.

    Article  Google Scholar 

  • Nilakantan, J. M., Huang, G. Q., & Ponnambalam, S. G. (2015a). An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems. Journal of Cleaner Production, 90, 311–325.

    Article  Google Scholar 

  • Nilakantan, J. M., Li, Z., Tang, Q., & Nielsen, P. (2017a). Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems. Journal of Cleaner Production, 156, 124–136.

    Article  Google Scholar 

  • Nilakantan, J. M., Nielsen, I., Ponnambalam, S. G., & Venkataramanaiah, S. (2017b). Differential evolution algorithm for solving RALB problem using cost-and time-based models. The International Journal of Advanced Manufacturing Technology, 89(1–4), 311–332.

    Article  Google Scholar 

  • Nilakantan, J. M., & Ponnambalam, S. G. (2012). An efficient PSO for type II robotic assembly line balancing problem. In 2012 IEEE international conference on automation science and engineering (CASE) (pp. 600–605). IEEE.

  • Nilakantan, J. M., & Ponnambalam, S. G. (2016). Robotic U-shaped assembly line balancing using particle swarm optimization. Engineering Optimization, 48(2), 231–252.

    Article  Google Scholar 

  • Nilakantan, J. M., Ponnambalam, S. G., & Jawahar, N. (2016). Design of energy efficient RAL system using evolutionary algorithms. Engineering Computations, 33(2), 580–602.

    Article  Google Scholar 

  • Nilakantan, J. M., Ponnambalam, S. G., Jawahar, N., & Kanagaraj, G. (2015b). Bio-inspired search algorithms to solve robotic assembly line balancing problems. Neural Computing and Applications, 26(6), 1379–1393.

    Article  Google Scholar 

  • Nilakantan, J. M., Ponnambalam, S. G., & Nielsen, P. (2017b). Application of particle swarm optimization to solve robotic assembly line balancing problems. In Handbook of neural computation (pp. 239–267). Academic Press.

  • Oztemel, E., & Gursev, S. (2020). Literature review of industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127–182.

    Article  Google Scholar 

  • Pereira, J., Ritt, M., & Vásquez, Ó. C. (2018). A memetic algorithm for the cost-oriented robotic assembly line balancing problem. Computers & Operations Research, 99, 249–261.

    Article  Google Scholar 

  • Rabbani, M., Mousavi, Z., & Farrokhi-Asl, H. (2016). Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem. Journal of Industrial and Production Engineering, 33(7), 472–484.

    Article  Google Scholar 

  • Ramachandram, D., & Rajeswari, M. (2004). Neural network-based robot visual positioning for intelligent assembly. Journal of Intelligent Manufacturing, 15(2), 219–231.

    Article  Google Scholar 

  • Rubinovitz, J., & Bukchin, J. (1991). Design and balancing of robotic assembly lines. In Proceedings of the fourth world conference on robotics research, Pittsburgh, PA, 1991.

  • Rubinovitz, J., Bukchin, J., & Lenz, E. (1993). RALB–A heuristic algorithm for design and balancing of robotic assembly lines. CIRP Annals, 42(1), 497–500.

    Article  Google Scholar 

  • Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18–25.

    Google Scholar 

  • Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666–693.

    Article  Google Scholar 

  • Tasan, S. O., & Tunali, S. (2008). A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing, 19(1), 49–69.

    Article  Google Scholar 

  • Tsai, D. M., & Yao, M. J. (1993). A line-balance-based capacity planning procedure for series-type robotic assembly line. International Journal of Production Research, 31(8), 1901–1920.

    Article  Google Scholar 

  • Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., & Spengler, T. S. (2019). Balancing of assembly lines with collaborative robots. Business Research, 13, 93–132.

    Article  Google Scholar 

  • Weckenborg, C., & Spengler, T. S. (2019). Assembly Line Balancing with Collaborative Robots under consideration of Ergonomics: A cost-oriented approach. IFAC-PapersOnLine, 52(13), 1860–1865.

    Article  Google Scholar 

  • Yoosefelahi, A., Aminnayeri, M., Mosadegh, H., & Ardakani, H. D. (2012). Type II robotic assembly line balancing problem: An evolution strategies algorithm for a multi-objective model. Journal of Manufacturing Systems, 31(2), 139–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames Chutima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chutima, P. A comprehensive review of robotic assembly line balancing problem. J Intell Manuf 33, 1–34 (2022). https://doi.org/10.1007/s10845-020-01641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01641-7

Keywords

Navigation