Skip to main content
Log in

A Multiple Models Approach for Adaptation and Learning in Mobile Robots Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The paper proposes a multiple models based control methodology for the solution of the tracking problem for mobile robots. The proposed method utilizes multiple models of the robot for its identification in an adaptive and learning control framework. Radial Basis Function Networks (RBFNs) are considered for the multiple models in order to exploit the non-linear approximation capabilities of the nets for modeling the kinematic behaviour of the vehicle and for reducing unmodelled tracking errors contributions. The training of the nets and the control performance analysis have been done in a real experimental setup. The experimental results are satisfactory in terms of tracking errors and computational efforts and show the improvement in the tracking performance when the proposed methodology is used for tracking tasks in dynamical uncertain environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed-Zaid, F., Ioannou, P.A., Polycarpou, M.M., Youssef, H.M.: Identification and control of aircraft dynamics using radial basis function networks. In: Proceedings of the Second IEEE Conference on Control Applications, pp. 567–572. Vancouver, B.C. (1993)

  2. Angeloni, A., Leo, T., Longhi, S., Zulli, R.: Real time collision avoidance for mobile robots. In: Proceedings of the 6th Symposium on Measurement and Control in Robotics (ISMCR 96), pp. 239–244. Brussels, Belgium (1996)

  3. Baldini, M., Corradini, M., Jetto, L., Longhi, S.: A multiple-model based approach for the intelligent control of underwater remotely operated vehicles. In: Proceedings of the 14th Triennial World Congress of IFAC, vol. Q, pp. 19–24. Beijing, P.R. China (1999)

  4. Bourhis, G., Horn, O., Habert, O., Pruski, A.: An autonomous vehicle for people with motor disabilities. IEEE Robot. Autom. Mag. 7(1), 20–28 (2001)

    Article  Google Scholar 

  5. Canudas-de-Wit, C., Khennouf, H.: Quasi-continuous stabilizing controllers for nonholonomic systems: design and robustness considerations. In: Proceedings of the 3rd European Control Conference, pp. 2630–2635. Rome, Italy (1995)

  6. Canudas-de-Wit, C., Khennouf, H., Samson, C., Sordalen, O.J.: Nonlinear control design for mobile robots. In: Zheng, Y.F. (ed.) Recent Trends in Mobile Robots. World Scientific, Singapore, pp. 121–156 (1993)

    Google Scholar 

  7. Chen, B., Lee, T., Chang, W.: A robust \(H_{\infty}\) model reference tracking design for nonholonomic mechanical control systems. Int. J. Control 63, 283–306 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Chen, F., Liu, C.: Adaptively controlling nonlinear continuous-time systems using multilayer neural networks. IEEE Trans. Automat. Contr. 39(6), 1306–1310 (1994)

    Article  MATH  Google Scholar 

  9. Chen, L., Narendra, K.S.: Nonlinear adaptive control using neural networks and multiple models. In: Proceedings of the 2000 American Control Conference, vol. 6., pp. 4199–4203 (2000)

  10. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  11. Conte, G., Longhi, S., Zulli, R.: Nonholonomic motion planning using distance field. In: Proceedings of the 1995 IFAC Conference on Intelligent Autonomous Vehicles, pp. 93–98. Helsinki, Finland (1995)

  12. Conte, G., Longhi, S., Zulli, R.: Motion planning for unicycle and car-like robots. Int. J. Syst. Sci. 27(8), 791–798 (1996)

    MATH  Google Scholar 

  13. Corradini, M., Ippoliti, G., Longhi, S.: Neural networks based control of mobile robots: development and experimental validation. J. Robot. Syst. 20(10), 587–600 (2003)

    Article  Google Scholar 

  14. Corradini, M., Leo, T., Orlando, G.: Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects. J. Robot. Syst. 19(4), 177–188 (2002)

    Article  Google Scholar 

  15. Corradini, M., Orlando, G.: Robust tracking control of mobile robots in the presence of uncertainties in the dynamical model. J. Robot. Syst. 18(6), 318–323 (2001)

    Article  Google Scholar 

  16. Cybenco, G.: Approximation by superpositions of a sigmoidal function. Math. Control, Signal Syst. 2(4), 303–314 (1989)

    Google Scholar 

  17. D’Amico, A., Ippoliti, G., Longhi, S.: A radial basis function networks approach for the tracking problem of mobile robots. In: Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM '01). Como, Italy (2001)

  18. d’Andrea Novel, B., Bastin, G., Campion, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Rob. Res. 14(6), 543–559 (1995)

    Google Scholar 

  19. de Oliveira, V., de Pieri, E., Lages, W.: Feedforward control of a mobile robot using a neural network. In: Proceedings of the 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3342–3347. Nashville, Tennessee, USA (2000)

  20. de Sousa Jr., C., Hemerly, E., Galvao, R.: Adaptive control for mobile robot using wavelet networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 32(4), 493–504 (2002)

    Article  Google Scholar 

  21. De Luca, A., Di Benetto, M.: Control of nonholonomic systems via dynamic compensation. Kybernetica 29(6), 593–608 (1993)

    MATH  Google Scholar 

  22. De Luca, A., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: Laumond, J.-P. (ed.) Robot Motion Planning and Control, pp. 171–253. Springer, Berlin Heidelberg New York (1998)

    Chapter  Google Scholar 

  23. Dixon, W., Dawson, M., Zergeroglu, E.: Tracking and regulation control of a mobile robot system with kinematic disturbance: a variable structure like approach. ASME Trans. J. Dyn. Syst. Meas. Control 122, 616–623 (2000)

    Article  Google Scholar 

  24. Dong, W., Huo, W., Tso, S., Xu, W.: Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots. IEEE Trans. Robot. Autom. 16(6), 870–874 (2000)

    Article  Google Scholar 

  25. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of the 34th Conference on Decision and Control. New Orleans, Louisiana, pp. 3805–3810 (1995)

  26. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  27. Fioretti, S., Leo, T., Longhi, S.: A navigation system for increasing the autonomy and the security of powered wheelchairs. IEEE Trans. Rehabil. Eng. 8(4), 490–498 (2000)

    Article  Google Scholar 

  28. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  29. Girosi, F., Poggio, T.: Neural networks and the best approximation property. Biol. Cybern. 63, 169–176 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hu, T., Yang, S., Wang, F., Mittal, G.: A neural network controller for a nonholonomic mobile robot with unknown robot parameters. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, District of Columbia, pp. 3540–3545 (2002)

  31. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems – A survey. Automatica 28(6), 1083–1112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hush, D.R., Horne, B.G.: Progress in supervised neural networks. IEEE Signal Process. Mag. 10, 8–39 (1993)

    Article  Google Scholar 

  33. Ippoliti, G., Jetto, L., Longhi, S.: Switching based supervisory control of underwater vehicles. In: Roberts, G., Sutton, R. (eds.) Advances in Unmanned Marine Vehicles. IEE’s Control Engineering Series, pp. 105–126 (2006)

  34. Ippoliti, G., Longhi, S.: Multiple models for adaptive control to improve the performance of minimum variance regulators. In: IEE Proceedings - Control Theory and Applications, vol. 151 no. 2, pp. 210–217. The Institution of Electrical Engineers, Stevenage, UK (2004)

  35. Jagannathan, S., Lewis, F., Pastravanu, O.: Model reference adaptive control of nonlinear dynamical systems using multilayer neural networks. In: Proceedings of the 1994 IEEE World Congress on Computational Intelligence, 1994 IEEE International Conference on Neural Networks. Orlando, Florida, USA, pp. 4766–4771 (1994)

  36. Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots. IEEE Trans. Robot. Autom. 15, 219–229 (1999a)

    Article  Google Scholar 

  37. Jetto, L., Longhi, S., Vitali, D.: Localization of a wheeled mobile robot by sensor data fusion based on a fuzzy logic adapted Kalman filter. Control Eng. Pract. 7, 763–771 (1999b)

    Article  Google Scholar 

  38. Jiang, Z.P., Nijmeijer, H.: Tracking control of mobile robots: A case study in backstepping. Automatica 33, 1393–1399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation. Cincinati, Ohio, pp. 384–389 (1990)

  40. Kyriakopoulos, K., Saridis, G.: An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments. Automatica 29(2), 20–36 (1993)

    Article  MathSciNet  Google Scholar 

  41. Lee, T.-C., Song, K.-T., Lee, C.-H., Teng, C.-C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9(2), 305–318 (2001)

    Article  Google Scholar 

  42. Lewis, F., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 79 (1996)

  43. Lin, S., Goldenberg, A.: Neural-network control of mobile manipulators. IEEE Trans. Neural Netw. 12(5), 1121–1133 (2001)

    Article  Google Scholar 

  44. Mihram, G.A.: Simulation: Statistical Foundations and Methodology, vol. 92 of Mathematics in Science and Engineering. Academic, New York (1972)

    Google Scholar 

  45. Minguez, J., Montano, L., Khatib, O.: Reactive collision avoidance for navigation with dynamic constraints. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. EPFL, Lausanne, Switzerland, pp. 588–594 (2002)

  46. Morse, A.S.: Control using logic-based switching. In: Isidori, A. (ed.) Trends in Control: A European Perspective. Springer, Berlin Heidelberg New York (1995)

    Google Scholar 

  47. Motte, I., Campion, G.: A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints. IEEE Trans. Robot. Automat. 16, 875–880 (2000)

    Article  Google Scholar 

  48. Narendra, K.S., Xiang, C.: Adaptive control of discrete-time systems using multiple models. IEEE Trans. Automat. Contr. 45(9), 1669–1686 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Automat. Contr. 41(3), 447–451 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  50. Polycarpou, M.M., Ioannou, P.A.: Adaptive bounding techniques for stable neural control systems. In: Proceedings of the 34th Conference on Decision and Control. New Orleans, Louisiana, pp. 2442–2447 (1995)

  51. Prassler, E., Scholz, J., Fiorini, P.: A robotic wheelchair for crowded public environments. IEEE Robot. Autom. Mag. 7(1), 38–45 (2001)

    Article  Google Scholar 

  52. Rovithakis, G.A., Christodoulou, M.A.: Adaptive control of unknown plants using dynamical neural networks. IEEE Trans. Syst. Man Cybern. 24, 400–412 (1994)

    Article  MathSciNet  Google Scholar 

  53. Sadegh, N.: A nodal link perceptron network with applications to control of a nonholonomic system. IEEE Trans. Neural Netw. 6(6), 1516–1523 (1995)

    Article  MathSciNet  Google Scholar 

  54. Samson, C., Ait-Abderrahim, K.: Feedback control of a nonholonomic wheeled cart in cartesian space. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento, California, pp. 1136–1141 (1991)

  55. Sanner, R.M., Essex, C.: Multiresolution radial basis function networks for the adaptive control of robotic systems. In: UKACC International Conference on Control '96, pp. 894–898 (1996)

  56. Sanner, R.M., Slotine, J.-J.E.: Stable adaptive control and recursive identification using radial gaussian networks. In: Proceedings of the 30th Conference on Decision and Control. Brighton, England, pp. 2116–2123 (1991)

  57. Sanner, R.M., Slotine, J.-J.E.: Function approximation, “neural” networks, and adaptive nonlinear control. In: Proceedings of the Third IEEE Conference on Control Applications. Glasgow, UK, pp. 1225–1232 (1994)

  58. Tsourveloudis, N., Valavanis, K., Hebert, T.: Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic. IEEE Trans. Robot. Autom. 17(4), 490–497 (2001)

    Article  Google Scholar 

  59. Tzafestas, S.G., Prokopiou, P.A., Ippoliti, G.: Hammerstein-type human arm models assisting in variable-time-delays-robust telemanipulation. In: Proceedings of the 3rd National Congress on Computational Mechanics (NCCM'99). Volos, Greece, pp. 599–608 (1999)

  60. Unar, M.N., Murray-Smith, D.J.: Automatic steering of ships using neural network. Int. J. Adapt. Control Signal Process. 13, 203–218 (1999)

    Article  MATH  Google Scholar 

  61. Warwick, K., Kambhampati, C., Parks, P., Mason, J.: Dynamic systems in neural networks. In: Hunt, K., Irwin, G., Warwick, K. (eds.) Neural Network Engineering in Dynamic Control Systems, pp. 27–41. Springer-Verlag, London, UK (1996)

    Google Scholar 

  62. Weller, S.R., Goodwin, G.C.: Hysteresis switching adaptive control of linear multivariable systems. IEEE Trans. Autom. Contr. 39(7), 1360–1375 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  63. Yang, J.M., Kim, J.H.: Sliding mode motion control of nonholonomic mobile robots. IEEE Control Syst. 19(2), 15–23 (1999)

    Article  MATH  Google Scholar 

  64. Zunino, G., Christensen, H.: Simultaneous localization and mapping in domestic environments. In: International Conference on Multisensor Fusion and Integration for Intelligent Systems, (MFI 2001), pp. 67–72 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Longhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Amico, A., Ippoliti, G. & Longhi, S. A Multiple Models Approach for Adaptation and Learning in Mobile Robots Control. J Intell Robot Syst 47, 3–31 (2006). https://doi.org/10.1007/s10846-006-9053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9053-5

Key words

Categories

Navigation