Skip to main content
Log in

Neuro-Kinematics Based Dexterous Robotics Hand Force Optimization

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The complexity of computing appropriate distribution of manipulation forces among fingers of a four-fingered robot hand defined in a dynamically Task-Space coordinate task is addressed. Finger-object interactions are modelled as point frictional contacts, consequently, the system is indeterminate. Hence, an optimal solution does necessitate for controlling forces acting on a grasped object. A fast and efficient method for computing optimal grasping and manipulation forces is presented based on a quadratic optimisation formulation, where computation has been based on using the nonlinear factual model of contacts. Furthermore, in order to achieve grasping while in motion, the hand inverse Jacobian has to be intensively computed, consequently, we investigate an efficient approach of employing an artificial neural network for the multi-finger robot hand in which the object motion is defined in. The approach followed here is to let an ANN to learn the nonlinear inverse kinematics functional relating the hand joints positions and displacements to object displacement. This is done by considering the inverse hand Jacobian, in addition to the interaction between hand fingers and the object being grasped and manipulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cutkosky, M.R.: Robotic grasping and fine manipulation. Kluwer, Boston, MA (1985)

    Google Scholar 

  2. Jacobsen, S.C., Iversen, E.K., Johnson, R.T., Biggers, K.B.: Design of the Utah/M.I.T. dexterous hand. Proc. IEEE conf. on Robotics and Automation, San Francisco, CA, pp. 1520–1532 (1986)

  3. Kobayashi, H.: On articulated hands. In: Hanafusa, H., Inoue, H. (eds.) Robotics research: The second international symposium, August, pp. 20-23, Kyoto, Japan (1984)

    Google Scholar 

  4. Okada, T.: Computer control of a multi-jointed finger system for precise handling. IEEE Trans. Syst. Man Cybern. 9(2):(1979)

  5. Hollerhach, J., Narasimhan, S.: Finger force computation without the grip Jacobian. Proceedings of IEEE conference on robotics and automation, San Francisco, CA, pp. 871–875 (1986)

  6. Kerr, J., Roth, B.: Analysis of multifingered hands. Int. J. Rob. Res. 1, 4–17 (1982)

    Article  Google Scholar 

  7. Nakamura, Y.: Advanced robotics: Redundancy and optimization. Addison-Wesley, Reading, MA (1991)

    Google Scholar 

  8. Cheng Fan, Orin D.: Efficient algorithm for optimal force distribution—the compact-dual LP method. IEEE Trans. Robot. Autom. 6(2):178–187 (1990)

    Article  Google Scholar 

  9. Al-Gallaf, E., Warwick, K.: (Cybhand) A four fingered dexterous hand. Proceedings of the IEEE international symposium in signal processing, robotics, and neural networks, France, pp. 657–777 (1994)

  10. Bekey, G., Tomovic, H., Karplus, W.: Knowledge-based control of grasping in robot hands using heuristics from human motor skills. IEEE Trans. Robot. Autom. 9(6):709–721 (1993)

    Article  Google Scholar 

  11. Xi, N., Tran, J., Bejczy, K.: Intelligent planning and control for multi-robot coordination: An event-based approach. IEEE Trans. Robot. Autom. 12(3):439–445 (1996)

    Article  Google Scholar 

  12. Huan, L., Iberall T., Bekey, G.: Neural network architecture for robot hand control. Proceedings of the IEEE international conference on neural networks, San Diego, pp. 38–43 (1988)

  13. Hashimoto, H., Kubota, T., Sato, M., Harashima, F.: Visual control of robotic manipulator based on neural networks. IEEE Trans. Ind. Electron. 39(6):490–495 (1992)

    Article  Google Scholar 

  14. Hashimoto, H., Kubota, T., Kuduo, M., Harashima, F.: Self-organizing visual servo system based on neural networks. IEEE Control Syst. Mag.:31–36 (1992)

  15. Guez, A., Ahmed, Z.: Solution to the inverse kinematics problem in robotics by neural networks. Proceedings of the International Conference on Neural Networks, USA (1988)

  16. P. Patrick van der Smagt, Krose, J.: A real-time learning neural robot controller. Proceedings of the 1991 international conference on artificial neural networks. ICANN-91, Finland, pp. 351-356 (1991)

  17. Schram, G., Linden, F., Krose, B., Groen, F.: Visual tracking of moving objects using a neural network controller. Int. J. Robot. Autonom Syst. (18):293–299 (1996)

    Article  Google Scholar 

  18. Maciejewski, A., Klein, C.: Numerical filtering for the operation of robotics manipulators through kinematically singular configurations. J. Robot. Syst. 5(6):527–552 (1988)

    Article  Google Scholar 

  19. Nakamura, Y., Hanafusa, H.: Inverse kinematics solutions with singularity robustness for robot manipulator control. ASME J. Dyn. Syst. Meas. Control 108, 163–171 (1986)

    Article  MATH  Google Scholar 

  20. Maciejewski, A., Klein, C.: The singular value decomposition: computation and applications to robotics. Int. J. Rob. Res. 8(6):63–79 (1989)

    Article  Google Scholar 

  21. Klein, C., Blaho, B.: Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Rob. Res. 6(2):71–83 (1987)

    Article  Google Scholar 

  22. Dubey, R., Luh, J.: Redundant robot control using task based performance measures. J. Robot. Syst. 5(5):409–432 (1988)

    Article  Google Scholar 

  23. Lee, S.: Dual redundant arm configuration optimization with task-oriented dual manipulability. IEEE Trans. Robot. Autom. 5(1):78–97 (1989)

    Google Scholar 

  24. Lilly, K., Orin, D.: Efficient dynamic simulation for multiple chain robotics mechanisms. In: Bernard, D., Man, G. (eds.) Proceedings of 3rd annual conference aerospace computational control, Pasadena, pp. 73–87 (1989)

  25. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: A spatial operator algebra for manipulator modeling and control. Int. J. Rob. Res. 10, 371–381 (1991)

    Article  Google Scholar 

  26. Wohlke, G.: Neuro-fuzzy based system architecture for the intelligent control of multi-finger robot hands. Proceedings of the IEEE international conference on fuzzy systems, Orlando, pp. 26–29 (1994)

  27. Zsiros, P., Baranyi, P., Korondi, P.: A generalized neural network for a humanoid hand. Proceedings of the IEEE international symposium on industrial electronics (ISIE’ 2000), Puebla, pp. 523–528 (2000)

  28. Li-Ren, L., Taipei, H.: DSP-based fuzzy control of a multi-fingered robot hand. Proceedings of the IEEE international conference on systems, man and cybernetics, Vancouver (1995)

  29. Doersam, T., Ftikow, S., Streit, I.: Fuzzy-based grasp force adaptation for multi-fingered robot hands. Proceedings of the IEEE international conference on fuzzy systems, vol. 3, Orlando (1994)

  30. Caihua, X., Youlun, X.: Neural-network based force planning for multifingered grasp. Int. J. Rob. Autonom. Syst. 4, 365-375 (1997)

    Google Scholar 

  31. Fuentes, O., Nelson, R.: Learning dexterous manipulation strategies for multifingered robot hands using the evolution strategy. Int. J. Mach. Learning 31, 223–237 (1998)

    Article  MATH  Google Scholar 

  32. Fischer, T., Rapela, D., Woern, H.: Joint controller for the object-pose controlling on multi-finger grippers. IEEE International Conference on Advanced Intelligent Mechatronics, Georgia (1999)

  33. Fok, L., Wang, J.: Two recurrent neural networks for grasping force optimization of multi-fingered robotics hands. Proceedings of the 2002 international joint conference on neural networks, IJCNN, pp. 12–17 (2002)

  34. Al-Gallaf, E.: Neuro-fuzzy inverse Jacobian mapping for multi-finger robot hand control. Int. J. Intell. Robot. Syst. 18(1): (2003)

  35. Lia, Z.M., Zatsiorskyb, V.M., Latashb, M.L., Bosec, N.K.: Anatomically and experimentally based neural networks modeling force coordination in static multi-finger tasks. J. Neuro-Comput. 47, 259–275 (2002)

    Google Scholar 

  36. Nahon, M., Angeles, J.: Optimisation of dynamic forces in mechanical hands. J. Mech. Des. 113, 167–173 (1991)

    Article  Google Scholar 

  37. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27, 1–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Al-Gallaf.

Additional information

Notation: Most of the defined variables in the manuscript are vector or matrix in size.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Gallaf, E.A. Neuro-Kinematics Based Dexterous Robotics Hand Force Optimization. J Intell Robot Syst 50, 181–206 (2007). https://doi.org/10.1007/s10846-007-9160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9160-y

Keywords

Navigation