Skip to main content
Log in

Experimental Comparison Research on Active Vibration Control for Flexible Piezoelectric Manipulator Using Fuzzy Controller

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Space manipulators are flexible structures. Vibration problem will be unavoidable due to motion or external disturbance excitation. Model based control methods will not maintain the required accuracy because of the existence of nonlinear factors and parameter uncertainties. To solve these problems, fuzzy logic control laws with different membership function groups are adopted to suppress vibrations of a flexible smart manipulator using collocated piezoelectric sensor/actuator pair. Also, dual-mode controllers combining fuzzy logic and proportional integral control are designed, for suppressing the lower amplitude vibration near the equilibrium point significantly. Experimental comparison research is conducted, using fuzzy control algorithms and the dual-mode controllers with different membership functions. The experimental results show that the adopted fuzzy control algorithms can substantially suppress the larger amplitude vibration; and the dual-mode controllers can also damp out the lower amplitude vibration significantly. The experimental results demonstrate that the proposed fuzzy controllers and dual-mode controllers can suppress vibration effectively, and the optimal placement is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Worden, K., Bullough, W.A., Haywood, J.: Smart Technologies. World Scientific, Singapore (2003)

    Book  Google Scholar 

  2. Sun, D., Mills, J.K., Shan, J.J., Tso, S.K.: A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14, 381–401 (2004)

    Article  Google Scholar 

  3. Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8, 605–611 (1985)

    Article  MATH  Google Scholar 

  4. Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration. Academic, London (1996)

    Google Scholar 

  5. Fanson, J.L., Caughey, T.K.: Positive position feedback control for large space structures. AIAA J. 28(4), 717–724 (1990)

    Article  Google Scholar 

  6. Qiu, Z.C., Zhang, X.M., Wu, H.X., Zhang, H.H.: Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. J. Sound Vib. 301, 521–543 (2007)

    Article  MathSciNet  Google Scholar 

  7. Qiu, Z.C., Wu, H.X., Zhang, D.: Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope. Thin-Walled Struct. 47(8–9), 836–846 (2009)

    Article  Google Scholar 

  8. Dong, X.J., Meng, G., Peng, J.C.: Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study. J. Sound Vib. 297, 680–693 (2006)

    Article  MathSciNet  Google Scholar 

  9. Choi, S.B., Sohn, J.W.: Chattering alleviation in vibration control of smart beam structures using piezofilm actuators: experimental verification. J. Sound Vib. 294(3), 640–649 (2006)

    Article  Google Scholar 

  10. Qiu, Z.C., Han, J.D., et al.: Active vibration control of a flexible beam using a non-collocated acceleration sensor an piezoelectric patch actuator. J. Sound Vib. 326(3–5), 438–455 (2009)

    Article  Google Scholar 

  11. Qiu, Z.C., Wu, H.X., Ye, C.D.: Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate. Aerosp. Sci. Technol. 13(6), 277–290 (2009)

    Article  Google Scholar 

  12. Caracciolo, R., Richiedei, D., Trevisani, A., et al.: Robust mixed-norm position and vibration control of flexible link mechanisms. Mechatronics 15(7), 767–791 (2005)

    Article  Google Scholar 

  13. Li, Z.J., Ge, S.S., Ming, A.G.: Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators. IEEE Trans. Syst. Man Cybern., Part B 37(3), 607–616 (2007)

    Article  Google Scholar 

  14. Li, Z.J., Ge, S.S., Adams, M., Wijesoma, W.S.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776–784 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kwak, M.K., Sciulli, D.: Fuzzy-logic based vibration suppression control experiments on active structures. J. Sound Vib. 191(1), 15–28 (1996)

    Article  Google Scholar 

  16. Kim, S., Clark, W.W.: Fuzzy logic semi-active vibration control. Adaptive Structures and Materials Systems-1999, ASME 1999, AD-Vol.59/MD-Vol.87, pp. 367–372.

  17. Lin, J., Liu, W.Z.: Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J. Sound Vib. 296, 567–582 (2006)

    Article  Google Scholar 

  18. Qu, W.Z., Sun, J., Qiu, Y.: Active control of vibration using a fuzzy control method. J. Sound Vib. 275, 917–930 (2004)

    Article  MathSciNet  Google Scholar 

  19. Lin, J.: An active-passive absorber by using hierarchical fuzzy methodology for vibration control. J. Sound Vib. 304, 752–768 (2007)

    Article  Google Scholar 

  20. Teng, T.L., Peng, C.P., Chuang, C.: A study on the application of fuzzy theory to structural active control. Comput. Methods Appl. Mech. Eng. 189, 439–448 (2000)

    Article  MATH  Google Scholar 

  21. Gawronski, W.K., Lim, K.B.: Balanced actuator and sensor placement for flexible structures. Int. J. Control 65(1), 131–145 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gawronski, W.K.: Dynamics and Control of Structures: A Modal Approach. Springer, New York (1998)

    MATH  Google Scholar 

  23. Yang, Y., Jin, Z.L., Soh, C.: Integrated optimal design of vibration control system for smart beams using genetic algorithms. J. Sound Vib. 282, 1293–1307 (2005)

    Article  Google Scholar 

  24. Liu, P., Rao, V.S.: Active control of smart structures with optimal actuator and sensor locations. In: Proceedings of SPIE Smart Structures and Materials: Modeling, Signal Processing and Control, vol. 4693, pp. 1–12 (2002)

  25. Li, Y., Onoda, J., Minesugi, K.: Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression. Acta Astronaut. 50(6), 335–341 (2002)

    Article  Google Scholar 

  26. Devasia, S., Meressi, T., Paden, B.: Piezoelectric actuator design for vibration suppression: placement and sizing. J. Guid. Control Dyn. 16(5), 859–864 (1993)

    Article  Google Scholar 

  27. Leleu, S., Hisham, A.K., Bonnassieux, Y.: Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Trans. Instrum. Meas. 50(6), 1577–1582 (2001)

    Article  Google Scholar 

  28. Dhuri, K.D., Seshu, P.: Multi-objective optimization of piezo actuator placement and sizing using genetic algorithm. J. Sound Vib. 323, 495–514 (2009)

    Article  Google Scholar 

  29. Liu, J.K.: Intelligent Control. Publishing House of Electronics Industry, Beijing (2005, in Chinese)

    Google Scholar 

  30. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, New Jersey (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-cheng Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Jj., Qiu, Zc., Han, Jd. et al. Experimental Comparison Research on Active Vibration Control for Flexible Piezoelectric Manipulator Using Fuzzy Controller. J Intell Robot Syst 59, 31–56 (2010). https://doi.org/10.1007/s10846-009-9390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9390-2

Keywords

Navigation