Skip to main content

Advertisement

Log in

The Effect of Snake Muscular System on Actuators’ Torque

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Most of the research conducted on snake robots has been on movement, control or dynamics. There is only some research dealing with the reduction of actuators’ sizes. Actuator size usually depends on the force/torque it can provide. Small actuators imply a more efficient, long lasting, lighter and more flexible robot. The required force/torque and energy consumption consequently is directly affected by the mechanism design. Mother nature has always presented optimum systems and has inspired engineers. In this paper, we have adopted the snake anatomy to design a snake robot. The results show a reduction in torque demand. This robot is an extension of our previous research on building a snake without including the anatomy. The new robot weighs about only one-third of the previous version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsuo, T., Yokoyama, T., Ueno, D., Ishii, K.: Biomimetic motion control system based on a CPG for an amphibious multi-link mobile robot. J. B. E. 5, 91–97 (2008)

    Google Scholar 

  2. Transeth, A.A., Pettersen, K.Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27, 999–1015 (2009)

    Article  Google Scholar 

  3. Gray, J.: The mechanism of locomotion in snakes. J. Exp. Biol. 23(2), 101–123 (1994)

    Google Scholar 

  4. Lissmann, H.W.: Rectilinear locomotion in a snake. J. Exp. Biol. 26, 368–379 (1950)

    Google Scholar 

  5. Hirose, S.: Biologically Inspired Robot—Snake Like Locomotion and Manipulators. Oxford University Press, Oxford, England (translated to English by Peter Cave and Charles Goulden)

  6. Dowling, K.: Limbless locomotion: learning to crawl. In: Proceedings of IEEE, International Conference on Robotics & Automation, pp. 3001–3006 (1999)

  7. Ostrowski, J., Burdik, J.: Gait kinematics for a serpentine robot. In: Proceedings of IEEE, International Conference on Robotics & Automation, pp. 1294–1299 (1996)

  8. Shan, Y., Koren, Y.: Design and motion planning of a mechanical snake. IEEE Trans. Syst. Man Cybern. 23(4), 1091–1100 (1993)

    Article  Google Scholar 

  9. Chirikjian, G.S., Burdick, J.W.: The kinematics of hyper redundant robot locomotion. IEEE Trans. Robot. Autom. 11(6), 781–793

  10. Mattison, C.: The Encyclopedia of Snakes, pp. 37–39. Publisher, Facts on File, USA. ISBN: 0816039313

  11. Chirikjian, G.S., Burdick, W.: Hyper-redundant robot mechanisms and their applications. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 185–190 (1991)

  12. Sanal, U.Z., Erkmen, A.M., Erkmen, I.: Logical sensing and intelligent perception based on rough sets and dynamic decay adjustment learning. In: Proc. IEEE, pp. 3386–3391 (2002)

  13. Fukushima, E.F., Hirose, S.: An Efficient Steering Control Formulation for the Articulated Body Mobile Robot KR-II, Autonomous Robots, pp. 7–18. Kluwer Academic Publishers, Amsterdam (1996)

    Google Scholar 

  14. Kulali, G.M., Gevher, M., Erkmen, A.M., Erkmen, I.: Intelligent gait synthesizer for serpentine robot. In: Proc. IEEE, pp. 1513–1518 (2002)

  15. Long, G., Anderson, J., Borenstein, J.: The kinematic design of the omnipede: a new approach to obstacle traversion. In: Proc. IEEE, pp. 714–719 (2002)

  16. http://robby.caltech.edu/~chen/research.html

  17. Nilsson, M.: Why snake robots need torsion-free joints and how to design them. In: Proceedings of IEEE, International Conference on Robotics & Automation, pp. 412–417 (1998)

  18. www.snakerobots.com

  19. Robinson, G., Davies, J.B.C.: Continuum robots—a state of the art. In: Proceedings of IEEE, International Conference on Robotics & Automation, pp. 2849–2854 (1999)

  20. www.solarbotics.net/library/pdflib/pdf/earthwormlike_bots.pdf

  21. www.arc.nasa.gov/ic/snakeot/rationale_background.html

  22. www.space.com/news/snakebots_000504.html

  23. Briefs, T.: Insectile and vermiform exploratory robots. NASA Tech Briefs 23(11), 1–22 (1999)

    Google Scholar 

  24. Macera, J.A., Bahr, B., Barazandeh, F.: Snake-robot control strategy for navigation in an unknown environment. In: IMACS/IEEE, Greece, pp. 290–295 (1999)

  25. Barazandeh, F., Bahr, B.: Kinematics and dynamic analysis of a pneumatic snake robot. In: ISME2000, Tehran, pp. 283–288 (2000)

  26. Barazandeh, F., Bahr, B., Moradi, A.: Investigation of self-locking in concertina movement. In: MED2007, Greece (2007)

  27. Barazandeh, F., Bahr, B., Moradi, A.: How self-locking reduces actuators torque in climbing snake robots. In: AIM2007, Switzerland (2007)

  28. Bayraktaroglu, Z.Y.: Snake-like locomotion: experimentations with a biologically inspired wheel-less snake robot. Elsevier, Mech. Mach. Theor. 44, 591–602 (2009)

    Article  MATH  Google Scholar 

  29. Li, N., Zhao, T., Zhao, Y., Lin, Y.: Design and realization of a snake-like robot system based on a spatial linkage mechanism. Robotica 27, 779–788 (2009)

    Article  Google Scholar 

  30. Chen, L., Ma, S., Wang, Y., Li, B., Duan, D.: Design and modelling of a snake robot in traveling wave locomotion. Elsevier, Mech. Mach. Theor. 42, 1632–1642 (2007)

    Article  MATH  Google Scholar 

  31. Wang, W., Wang, K., Zhang, H.: Crawling gait realization of the mini-modular climbing caterpillar robot, Elsevier. Prog. Nat. Sci. 19, 1821–1829 (2009)

    Article  Google Scholar 

  32. Farzanpey, R.: Knowing about Snake. Published in Tehran University, Iran (2001)

    Google Scholar 

  33. Moon, B.R., Gans, C.: Kinematics, muscular activity, and propulsion in gopher snakes. J. Exp. Biol. 201, 2669–2684 (1998)

    Google Scholar 

  34. Sadrzadeh, M.: Anatomist of Crawler Animals. Published in Tehran University, Iran (2002)

    Google Scholar 

  35. Li, N., Zhao, T., Zhao, Y., Lin, Y.: Design and realization of a snake-like robot system based on a spatial linkage mechanism. Robotica 27, 779–788 (2009)

    Article  Google Scholar 

  36. Wolf, A., Brown, H.B., Casciola, R., Costa, A., Schwerin, M., Shammas, E., Choset, H.: A mobile hyper redundant mechanism for search and rescue tasks. In: Proceedings, 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 3, pp. 2889–2895 (2003)

  37. Cardona1, A.M., Barrero, J.I., Otalora, C., Parra, C.: Serpentine Locomotion Articulated Chain, vol. 2(3–4), pp. 179–185. ANAII Woodhead Publishing Ltd 179 ABBI (2005)

  38. Evans, S.: A review of the EMMA ranipulator rystem. Technical Repot (1997)

  39. Ananiev, A., Kalayko, I., Petrov, E., Hadjiysk, B.: Single-Motor Driven Construction of Hyper-Redundant Robot. In: APS/ECM 2004, Proceeding of Mechatronics and Robotics 04, IEEE. ISBN: 3-938153-30-X

  40. Meriam, J.L., Kraige, L.G.: Engineering Mechanics Statics, 2nd edn., p. 368. Wiley, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seid M. Sadat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei, S.M., Barazandeh, F., Haidarzadeh, M.S. et al. The Effect of Snake Muscular System on Actuators’ Torque. J Intell Robot Syst 59, 299–318 (2010). https://doi.org/10.1007/s10846-010-9404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9404-0

Keywords

Navigation