Skip to main content
Log in

Robust Fuzzy Control of Electrical Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Stability analysis for fuzzy control of robot manipulators has been a serious challenging problem in literature. The theoretical difficulties are highly increased due to the complexity of both manipulator dynamics and fuzzy controller structure. This paper develops a novel robust fuzzy control approach for electrical robot manipulators using the direct method of Lyapunov. We pass analytical difficulties by the use of voltage control strategy in replace of torque control strategy. Then, a normalized and decentralized Takagi–Sugeno fuzzy controller is presented in a simple structure. A simple Lyapunov candidate is proposed to apply stability analysis without knowing the explicit dynamics of system. Consequently, fuzzy control is analyzed and designed as a robust nonlinear control. Roles of scaling factors, gains in consequent parts, and membership functions in condition parts are considered in the control design. The proposed control approach is applied on a Puma560 robot arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2006)

    Google Scholar 

  2. Hodges, S.E.: Looking for a cheaper robot: visual feedback for automated PCB manufacture. Ph.D. thesis in University of Cambridge (1996)

  3. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE, New York (1996)

    MATH  Google Scholar 

  4. Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid roots. Control Syst. Mag. 11, 24–30 (1991)

    Article  Google Scholar 

  5. Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003)

    Article  Google Scholar 

  6. Fateh, M.M., Soltanpour, M.R.: Robust task-space control of robot manipulators under imperfect transformation of control space. Int. J. Innov. Comput. Info. Control. 5(11A), 3949–3960 (2009)

    Google Scholar 

  7. Fateh, M.M.: Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn. (2010). doi:10.1007/s11071-010-9677-7

    Google Scholar 

  8. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  9. Fateh, M.M.: Robust voltage control of electrical manipulators in task-space. Int. J. Innov. Comput. Info. Control. 6(6), 2691–2700 (2010)

    Google Scholar 

  10. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, New York (1996)

    Google Scholar 

  11. Lim, C.M., Hiyama, T.: Application of fuzzy logic control to a manipulator. IEEE Trans. Robot. Autom. 1(5), 688–691 (1991)

    Article  Google Scholar 

  12. Ham, C., Qu, Z., Johnson, R.: Robust fuzzy control for robot manipulators. IEE Proc., Control Theory Appl. 147(2), 212–216 (2000)

    Article  Google Scholar 

  13. Kim, E.: Output feedback tracking control of robot manipulator with model uncertainty via adaptive fuzzy logic. IEEE Trans. Fuzzy Syst. 12(3), 368–376 (2004)

    Article  Google Scholar 

  14. Hwang, J.P., Kim, E.: Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach. IEEE Trans. Fuzzy Syst. 14(2), 232–247 (2006)

    Article  Google Scholar 

  15. Ying, H.: The Takagi–Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica 34(2), 157–167 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tsay, D.L., Chung, H.Y., Lcc, C.J.: The adaptive control of nonlinear system using the Sugeno-type of fuzzy logic. IEEE Trans. Fuzzy Syst. 7(2), 225–229 (1999)

    Article  Google Scholar 

  17. Tsai, C.H., Wang, C.H., Lin, W.S.: Robust fuzzy model-following control of robot manipulators. IEEE Trans. Fuzzy Syst. 8(4), 462–469 (2000)

    Article  Google Scholar 

  18. Shen, Y., Cai, W.J., Li, S.: Multivariable process control: decentralized, decoupling, or sparse. Ind. Eng. Chem. Res. 49, 761–771 (2010)

    Article  Google Scholar 

  19. Hsua, S.H., Fua, L.C.: A fully adaptive decentralized control of robot manipulators. Automatica 42, 1761–1767 (2006)

    Article  Google Scholar 

  20. Jin, Y.: Decentralized adaptive fuzzy control of robot manipulators. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(1), 47–57 (1998)

    Article  Google Scholar 

  21. Kim, V.T.: Independent joint adaptive fuzzy control of robot manipulator. In: The 5th Biannual World Automation Congress, vol. 14, pp. 645–652 (2002)

  22. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 15, 116–132 (1985)

    MATH  Google Scholar 

  23. Ying, H.: Sufficient conditions on uniform approximation of multivariate functions by general Takagi–Sugeno fuzzy systems with linear rule consequent. IEEE Trans. Syst., Man. Cybernet. 28, 515–520 (1998)

    Article  Google Scholar 

  24. Ying, H.: An analytical study on structure, stability and design of general Takagi–Sugeno fuzzy control systems. Automatica 34, 1617–1623 (1998)

    Article  MATH  Google Scholar 

  25. Ding, Y., Ying, H., Shao, S.: Typical Takagi–Sugeno PI and PD fuzzy controllers: analytical structures and stability analysis. Inf. Sci. 151, 245–262 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Corke, P.I., Armstrong-Hlouvry, B.: A search for consensus among model parameters reported for the PUMA 560 robot. Proc. IEEE Int. Conf. Robot. Autom. 1, 1608–1613 (1994)

    Google Scholar 

  27. Wyeth, G.F., Kennedy, J., Lillywhite, J.: Distributed digital control of a robot arm. In: Proceedings of the Australian Conference on Robotics and Automation (ACRA 2000), pp. 217–222 (2000)

  28. Corke, P.I.: Robotics toolbox for {MATLAB}. IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Fateh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fateh, M.M. Robust Fuzzy Control of Electrical Manipulators. J Intell Robot Syst 60, 415–434 (2010). https://doi.org/10.1007/s10846-010-9430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9430-y

Keywords

Navigation