Skip to main content
Log in

A HIL simulator of Flexible-link Mechanisms

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a Hardware-In-the-Loop (HIL) simulator of flexible-link mechanisms. The core of the simulator is a highly accurate FEM nonlinear dynamic model of planar mechanisms. The accuracy of the proposed simulator is proved by comparing the response of the virtual model with the response of the real mechanism by using the same real controller. Results are provided by the use of classical controllers real-time capability of the dynamic model is guaranteed by a symbolic manipulation of the equations that describe the mechanism, in order to avoid the numerical inversion of the large mass matrix of the system. This HIL simulator is a valuable tool for the tuning of closed-loop control strategies for this class of mechanisms, since it allows to reduce the safety risks and the time needed to fine tune the real-time controller parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dwivedy, A.K., Eberhard, P.: Dynamical analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Leitner, J.: Space technology transition using hardware in the loop simulation. In: Proc. 1996 Aerospace Applications Conference. 2, 303–311

  3. Hanselman, H.: Hardware-in-the-loop simulation testing and its integration into a CACSD toolset. In: Proc. IEEE International Symposium on Computer-Aided Control System Design, 15–18 September 1996

  4. Pritshow, G., Röck, S.: Hardware in the loop simulation of machine tools. CIRP Ann. 53(1), 259–298 (2004)

    Article  Google Scholar 

  5. Stoeppler, G., Menzel, T., Douglas, S: Hardware-in-the-loop simulation of machine tools and manufacturing systems. Comput. Control Eng. J. 16(1), 10–15 (2005)

    Article  Google Scholar 

  6. Hu, X.: Applying robot-in-the-loop simulation to mobile robot systems. In: Proc. 12th International Conference on Advanced Robotics ICAR (2005)

  7. Aghili, F., Piedboeuf, J.C.: Contact dynamics emulation for hardware-in-loop simulation of robots interacting with environment. In: Proc. ICRA ’02. IEEE International Conference on Robotics and Automation

  8. Chabra, R., Emami, M.R.: Concurrent design of robot manipulators using hardware-in-the-loop simulation. In: Proc. 2008 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). Massachusetts, USA (2008)

  9. Martin A., Scot, E., Emami, M.R.: Design and development of robotic hardware-in-the-loop simulation. In: Proc. 9th ICAR International Conference on Control, Automation, Robotics and Vision, vol. 1, no. 6 (2006)

  10. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

  11. Bringmann E., Kramer A.: Model-based testing of automotive systems. 2008 1st IEEE International Conference on Software Testing, Verification, and Validation, pp. 485–493 (2008)

  12. Isermann, R., Schaffnit, J., Sinsel, S.: Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Eng. Pract. 7(5), 643–653 (1999)

    Article  Google Scholar 

  13. Boscariol, P., Gasparetto, A., Zanotto, V.: Active position and vibration control of a flexible links mechanism using model-based predictive control. J. Dyn. Syst. Meas. Control 132(1), 014506 (2010)

    Article  Google Scholar 

  14. Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)

    Article  MATH  Google Scholar 

  15. Boscariol, P., Gasparetto, A., Zanotto, V.: Vibrations reduction in a flexible link mechanism through the synthesis of an MPC controller. In: Proc: IEEE International Conference on Mechatronics ICM 2009, Malaga, Spain (2009)

  16. Giovagnoni M.: A numerical and experimental analysis of a chain of flexible bodies. ASME J. Dyn. Syst. Meas. Control 113, 73–80 (1994)

    Article  Google Scholar 

  17. Trevisani, A., Valcher, M.E.: An energy-based adaptive control design technique for multibody-mechanisms wit flexible-links. IEEE/ASME Trans. Mechatron. 10(5), 571–580 (2005)

    Article  Google Scholar 

  18. Gasparetto A., Zanotto, V.: Vibration reduction in a flexible-link mechanism through synthesis of an optimal controller. Meccanica 41(6), 611–622 (2006)

    Article  MATH  Google Scholar 

  19. Caracciolo, R., Richiedei, D., Trevisani, A.: Design and experimental validation of piecewise-linear state observers for flexible link mechanism. Meccanica 41(6), 623–637 (2006)

    Article  MATH  Google Scholar 

  20. Chang, LW., Hamilton, JF: The kinematics of robotic manipulators with flexible links using an equivalent rigid link system (ERLS) model. ASME J. Dyn. Syst. Meas. Control 113, 48–53 (1991)

    Article  Google Scholar 

  21. Mostaghel N., Davis T.: Representation of coulomb friction for dynamic analysis. Earthq. Eng. Struct. Dyn. 26, 541–548 (1997)

    Article  Google Scholar 

  22. Gasparetto, A.: On the modeling of flexible-link planar mechanism: experimental validation of an accurate dynamic model. ASME J. Dyn. Syst. Meas. Control 126(2), 365–375 (2004)

    Article  Google Scholar 

  23. Naidu DS.: Optimal control systems. CRC (2003)

  24. Franklin, F.G., Powell, F.G., Workman, M.L.: Digital control of dynamic systems, 2nd edn. Addison Wesley (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanni Zanotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boscariol, P., Gasparetto, A. & Zanotto, V. A HIL simulator of Flexible-link Mechanisms. J Intell Robot Syst 64, 427–446 (2011). https://doi.org/10.1007/s10846-011-9547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9547-7

Keywords

Navigation