Skip to main content
Log in

Occupancy Grid Learning Using Contextual Forward Modelling

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A mode versus clarity dilemma exists in occupancy grid based robotic mapping. This arises as two general approaches have emerged in the domain with diametric operational modes and differing representational abilities; the inverse and the forward approach. Their classification relates to the sensory model employed by the approaches. The inverse approach is characterised by an ability to construct a map in real time. This ability comes at the cost of reduced representational clarity however. The forward approach is capable of producing more accurate maps but requires all sensory data a priori. This work investigates if sub dividing the mapping problem into its constituent elements of sensor data evaluation and representation may facilitate improved real time map generation. ConForM (Contextual Forward Modelling) is presented as a technique for spatial perception and map building which addresses this problem which embodies this approach. Results from in-depth empirical evaluation illustrate the associated improvement in map quality resultant from the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arras, K., Siegwart, R.: Feature extraction and scene interpretation for map-based navigation and map building. In: Proceedings of SPIE, Mobile Robotics XII, Citeseer, vol. 3210, pp. 42–53 (1997)

  2. Bao, K.: On-line em and Quasi-bayes or: How I Learned to Stop Worrying and Love Stochastic Approximation. Master’s thesis, University of British Columbia (2003)

  3. Baron, R.J.: Mechanisms of human facial recognition. Int. J. Man-Mach. Stud. 15, 137–178 (1981)

    Article  Google Scholar 

  4. Brooks, R.: Elephants don’t play chess. Robot. Auton. Syst. 6(1–2), 3–15 (1990)

    Article  Google Scholar 

  5. Buhmann, J.M., Burgard, W., Cremers, A.B., Fox, D., Hofmann, T., Schneider, F.E., Strikos, J., Thrun, S.: The mobile robot RHINO. AI Mag. 16(2), 31–38 (1995)

    Google Scholar 

  6. Burgard, W., Fox, D., Jans, H., Matenar, C., Thrun, S.: Sonar based mapping with mobile robots using em. In: Proceedings of the International Conference on Machine Learning, pp. 67–76. Bled, Slovenia (1999)

    Google Scholar 

  7. Cañas, J.M., García-Alegre, M.C.: Realtime em segmentation of occupancy grids for robots navigation. In: IJCAI-99: Adaptive Spatial Representations of Dynamic Environments Workshop Proceedings, pp. 75–79. Stockholm, Sweden (1999)

  8. Carlson, J., Murphy, R., Christopher, S., Casper, J.: Conflict metric as a measure of sensing quality. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 2032–2039 (2005)

  9. Collins, J., O’Sullivan, S., Mansfield, M., Eaton, M., Haskett, D.: Developing an extensible benchmarking framework for map building paradigms. In: Proceedings Ninth International Symposium on Artificial Life and Robots. Oita, Japan (2004)

    Google Scholar 

  10. Collins, T., Collins, J.: Filtering reading sets for improved occupancy grid mapping. In: Proceedings of the 18th Mediterranean Conference on Control and Automation. Marrakech, Morocco (2010)

    Google Scholar 

  11. Collins, T., Collins, J., Ryan, C.: Improved occupancy grid learning—the ConForM approach to occupancy grid mapping. In: Proceedings of the 2007 International Conference on Informatics in Control, Automation and Robotics, pp. 492–497 (2007)

  12. Collins, T., Collins, J., Ryan, C.: Occupancy grid mapping: an empirical evaluation. In: Proceedings of the 15th Mediterranean Conference on Control and Automation. Athens, Greece (2007)

  13. Dempster, A., Laird, A., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simmultaneous localisation and map building (slam) problem. IEEE Trans. Robot. Autom. 17, 229–241 (2001)

    Article  Google Scholar 

  15. El-Hakim, S., Boulanger, P., Blais, F., Beraldin, J.A.: Sensor based creation of indoor virtual environment models. In: Proceedings of the 4th International Conference on Virtual Systems and Multimedia (VSMM), pp. 50–58. Gifu, Japan (1997)

    Chapter  Google Scholar 

  16. Elfes, A.: Occupancy Grids: A Probabilistic Framework for Robot Perception and Navigation. PhD thesis, CMU (1989)

  17. Everett, H.: Sensors for Mobile Robots: Theory and Application. AK Peters, Ltd (1995)

  18. Gat, E.: On Three-layer Architectures: Case Studies of Successful Robot System. MIT Press (1997)

  19. Guzzoni, D., Cheyer, A., Julia, L., Konolige, K.: Many robots make short work. AI Mag. 18(1), 55–64 (1997)

    Google Scholar 

  20. Hager, G., Kriegman, D., Yeh, E., Rasmussen, C.: Image-based prediction of landmark features for mobile robot navigation. In: IEEE Conf. on Robotics and Automation (ICRA), Citeseer, pp. 1040–1046 (1997)

  21. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. Advances in Artificial Life, pp. 704–720 (1995)

  22. Jorg, K.: World modeling for an autonomous mobile robot using heterogenous sensor information. Robot. Auton. Syst. 14(2–3), 159–170 (1995)

    Article  Google Scholar 

  23. Konolige, K.: Improved occupancy grids for map building. Auton. Robots 4(4), 351–367 (1997)

    Article  Google Scholar 

  24. Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot. Auton. Syst. 8, 47–63 (1991)

    Article  Google Scholar 

  25. Lee, S., Park, B., Lim, J., Cho, D.: Feature map management for mobile robots in dynamic environments. Robotica 28(1), 97–106 (2009)

    Article  Google Scholar 

  26. Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., Thrun, S.: Using EM to learn 3D models with mobile robots. In: Proceedings of the 18th International Conference on Machine Learning (ICML), pp. 329–336 (2001)

  27. Martin ,M.C., Moravec, H.: Robot evidence grids. Tech. Rep. CMU-RI-TR-96-06, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1996)

  28. Matthies, L., Elfes, A.: Integration of sonar and stereo range data using a grid-based representation. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation, pp. 727–733. Washington, DC (1988)

  29. McLachlan, G., Krishnan, T.: The EM algorithm and extensions. Probability and Statistics. Wiley, New York (1997)

    Google Scholar 

  30. Montemerlo, M., Pineau, J., Roy, N., Thrun, S., Verma, V.: Experiences with a mobile robotic guide for the elderly. In: Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, pp. 587–592. AAAI (2002)

    Google Scholar 

  31. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, pp. 116–121. St. Louis, Missouri (1985)

    Chapter  Google Scholar 

  32. Nebot, E., Masson, F., Guivant, J., Durrant-Whyte, H.: Robust simultaneous localisation and mapping for very large outdoor environments. Experimental Robotics VIII 5, 200–209 (2003)

    Article  Google Scholar 

  33. O’Sullivan, S., Collins, J.J., Mansfield, M., Haskett, D., Eaton, M.: Linear feature prediction for confidence estimation of sonar readings in map building. In: Proceedings 9th International Symposium on Artificial Life and Robots. Oita, Japan (2004)

    Google Scholar 

  34. Ribo, M., Pinz, A.: A comparison of three uncertainty calculi for building sonar-based occupancy grids. Robot. Auton. Syst. 35, 201–209 (2001)

    Article  MATH  Google Scholar 

  35. Roy, N., Baltus, G., Fox, D., Gemperle, F., Goetz, J., Hirsch, T., Margaritis, D., Montemerlo, M., Pineau, J., Schulte, J., Thrun, S.: Towards personal service robots for the elderly. In: Workshop on Interactive Robots and Entertainment WIRE 2000. Pittsburgh, PA (2000)

  36. Ruocco, S.: Robot Sensors and Transducers. John Wiley & Sons, Inc (1989)

  37. Sanderson, A., Weiss, L., Nayar, S.: Structured Highlight Inspection of Specular Surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 10(1), 44–55 (1988)

    Article  Google Scholar 

  38. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press (1998)

  39. Thrun, S.: Exploration and model building in mobile robot domains. In: Proceedings of IEEE International Conference on Neural Networks, IEEE Neural Network Council, pp. 175–180. San Francisco, CA (1993)

  40. Thrun, S.: Learning occupancy grids with forward models. In: Proceedings of the Conference on Intelligent Robots and Systems (IROS’2001), pp. 1676–1681. Maui, Hawaii (2001)

  41. Thrun, S.: Robotic mapping: a survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millennium, pp. 1–35. Morgan Kaufmann (2002)

  42. Thrun, S.: Learning occupancy grids with forward models. Auton. Robots 15, 111–127 (2003)

    Article  Google Scholar 

  43. Thrun, S., Bracken, A.: Learning Maps for Indoor Mobile Robot Navigation. Tech. Rep., Carnegie Mellon University (1996)

  44. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press (2005)

  45. Yamauchi, B., Beer, R.: Spatial learning for navigation in dynamic environments. IEEE Trans. Syst. Man Cybern. 26(3), 496–505 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, T. Occupancy Grid Learning Using Contextual Forward Modelling. J Intell Robot Syst 64, 505–542 (2011). https://doi.org/10.1007/s10846-011-9553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9553-9

Keywords

Mathematics Subject Classifications (2010)

Navigation