Skip to main content
Log in

A Humanoid Neck System Featuring Low Motion-Noise

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents our recently developed humanoid neck system that can effectively mimic motion of human neck with very low motion noises. The features of low motion noises allows our system to work like a real human neck. Thus the level of acoustic noises from wearable equipments, such as donning respirators or chemical-resistant jackets, induced by human head motion can be simulated and investigated using such a system. Our low motion-noise humanoid head/neck system is based on the spring structure, which can generate 1 degree of freedom (DOF) jaw movement and 3DOF neck movement. To guarantee the low-noise feature, no noise-makers like gear and electro-driven parts are embedded in the head/neck structure. Instead, the motion is driven by seven polyester cables, and the actuators pulling the cables are sealed in a sound insulation box. Furthermore, statics analysis and motion control design of the system have been presented. Experimental results clearly show that the head/neck system can greatly mimic the motion of human head with an A-weighted noise level of 30 dB or below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine, 2nd edn., pp. 85–125, JB Lippincott, Philadelphian (1990)

    Google Scholar 

  2. Hirukawa, H., Kanehiroa, F., Kanekoa, K.: Humanoid robotics platforms developed in HRP. Robot. Auton. Syst. 48(4), 165–175 (2004)

    Article  Google Scholar 

  3. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots and System, pp. 2478–2483. Lausanne, Switzerland (2002)

    Google Scholar 

  4. Tadesse, Y., Subbarao, K., Priya, K.: Realizing a humanoid neck with serial chain four-bar mechanism. J. Intell. Mater. Syst. Struct. 21(12), 1169–1191 (2010)

    Article  Google Scholar 

  5. Park, I.-W., Kim, J.-Y., Cho, B.-K., Oh, J.-H.: Control hardware integration of a biped humanoid robot with an android head. Robot. Auton. Syst. 56(1), 95–103 (2008)

    Article  Google Scholar 

  6. Han, J.D., Zeng, S.Q., Tham, K.Y., Badgero, M., Weng, J.Y.: Dav: a humanoid robot platform for autonomous mental development. In: Proceedings of the 2nd International Conference on Development and Learning, pp. 73–81. Cambridge, USA (2002)

    Google Scholar 

  7. Beira, R., Lopes, M., Praca, M.: Design of the robot-cub (iCub) head. In: IEEE International Conference on Robotics and Automation, pp. 94–100. Orlando, USA (2006)

  8. Miwa, H., Okuchi, T., Takanobu, H., Takanishi, A.: Development of a new human-like head robot WE-4. In: Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 2443–2448. EPFL, Lausanne, Switzerland (2002)

    Google Scholar 

  9. Albers, A., Brudniok, S., Ottnad, J., Sauter, C., Sedchaicham, K.: Upper body of a new humanoid robot-the design of ARMAR III. In: IEEE-RAS International Conference on Humanoid Robots, pp. 308–313. Genova, Italy (2006)

  10. Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schroder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008)

    Article  Google Scholar 

  11. Carbone, G., Lim, H.-O., Takanishi, A., Ceccarelli, M.: Stiffness analysis of biped humanoid robot WABIAN-RIV. Mech. Mach. Theory 41(1), 17–40 (2006)

    Article  MATH  Google Scholar 

  12. Hirth, J., Schmitz, N., Berns, K.: Emotional architecture for the humanoid robot head ROMAN. In: IEEE International Conference on Robotics and Automation, pp. 2150–2155. Roma, Italy (2007)

  13. Brouwer, D.M., Bennik, J., Leideman, J.: Mechatronic design of a fast and long range 4 degree of freedom humanoid neck. In: IEEE International Conference on Robotics and Automation, pp. 574–579. Kobe, Japan (2009)

    Chapter  Google Scholar 

  14. Gao, B., Zhao, J., Xi, N., Xu, J.: Combined kinematic and static analysis of a cable-driven manipulator with a spring spine. In: IEEE International Conference on Robotics and Automation, pp. 2725–2730. Shanghai, China (2011)

  15. Hashimoto, T., Hitramatsu, S., Tsuji, T., Kobayashi, H.: Development of the race robot SAYA for rich facial expressions. In: SICE-ICASE International Joint Conference, pp. 5423–5428. Busan, Korea (2006)

  16. Nori, F., Jamone, L., Metta, G., Sandini, G.: Accurate control of a human-like tendon-driven neck. In: IEEE International Conference on Humanoid Robots, pp. 371–378. Pittsburgh, Pennsylvania, USA (2007)

  17. Jamone, L., Fumagalli, M., Metta, G.: Machine-learning based control of a human-like tendon-driven neck. In: IEEE International Conference on Robotics and Automation, pp. 859–865. Anchorage, Alaska, USA (2010)

  18. Su, H., Dickstein-Fischer, L., Harrington, K.: Cable-driven elastic parallel humanoid head with face tracking for autism spectrum disorder interventions. In: Proceedings of the IEEE EMBS, pp. 467–470. Buenos Aires, Argentina (2010)

  19. Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robotics 22(1), 43–57 (2006)

    Article  Google Scholar 

  20. Neppalli, S., Csencsits, M.A., Jones, B.A., Walker, I.D.: Closed-form inverse kinematics for continuum manipulators. Adv. Robot. 23(15), 2077–2091 (2009)

    Article  Google Scholar 

  21. Simaan, N., Taylor, R., Flint, P.: A dexterous system for laryngeal surgery. In: IEEE International Conference on Robotics and Automation, pp. 351–357. New Orleans, LA, USA (2004)

  22. Xu, K., Simaan, N.: Analytic formulation for kinematics, statics and shape restoration of multi-backbone continuum robots via elliptic integrals. ASME J. Mech. Robot. 2(1), 011006-1-13 (2010)

    Google Scholar 

  23. Zhang, Z., Yang, G., Yeo, S.H.: Design optimization of a cable-driven two-DOF joint module with a flexible backbone. In: IEEE/ASME Advanced Intelligent Mechatronics Conference, pp. 385–390. Montreal, Canada (2010)

  24. Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill, New York (1936)

    Google Scholar 

  25. Frisch-Fay, R.: Flexible Bars. Butter Worths, Washington (1962)

    MATH  Google Scholar 

  26. Gao, B., Xi, N., Shen, Y., Zhao, J., Yang, R.: Development of a low motion-noise humanoid neck: statics analysis and experimental validation. In: IEEE Internationla Conference on Robotics and Automation, pp. 1203–1208. Anchorage, Alaska, USA (2010)

  27. Timoshenko, S., Young, D.H.: Advanced Dynamics. McGraw-Hill, New York (1948)

    Google Scholar 

  28. Panjabi, M.M.: Cervical spine kinematics and clinical instability. In: Clark, C.R. (ed.) The Cervical Spine, 4th edn., pp. 55–78. Lippincott, Philadelphian (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingtuan Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Xu, J., Zhao, J. et al. A Humanoid Neck System Featuring Low Motion-Noise. J Intell Robot Syst 67, 101–116 (2012). https://doi.org/10.1007/s10846-011-9643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9643-8

Keywords

Navigation