Skip to main content
Log in

A Diagnostic Thau Observer for a Class of Unmanned Vehicles

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper addresses the problem of sensor fault detection for a wide class of Unmanned Vehicles (UVs). First a general model for UVs, based on the dynamics of a 6 Degrees Of Freedom (6-DOF) rigid body, subject to gravity and actuation forces, is presented. This model is shown to satisfy the necessary conditions to the existence of a non-linear observer (Thau) when proper assumptions for the actuation forces are made. The observer can thus be used to generate diagnostic residuals inside a Fault Detection (FD) system. Finally, the proposed approach is customized for sensor fault detection on an unmanned quad-rotor vehicle, and simulation results show the effectiveness of the adopted solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altug, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2002)

  2. Bethke, B., Valenti, M., How, J.P.: Uav task assignment. IEEE Trans. Robot. Autom. 15(1), 39–44 (2008)

    Article  Google Scholar 

  3. Castillo, P., Lozano, R., Dzul, A.E.: Modelling and control of mini-flying machines. AIC Advances in Industrial Control. Springer (2005)

  4. Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, London (1999)

    MATH  Google Scholar 

  5. Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics (2002)

  6. Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2):90–99 (2007)

    Article  Google Scholar 

  7. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall (2002)

  8. Leonessa, A.: Underwater robots: motion and force control of vehicle-manipulator systems (g. antonelli; 2006) [book review]. IEEE Control Syst. Mag. 28(5), 138–139 (2008)

    Article  Google Scholar 

  9. Lyon, D.H.: A military perspective on small unmanned aerial vehicles. IEEE Instrum. Meas. Mag. 7(3), 27–31 (2004)

    Article  Google Scholar 

  10. Meskin, N., Khorasani, K.: Actuator fault detection and isolation for a network of unmanned vehicles. IEEE Trans. Automat. Contr. 54(4), 835–840 (2009)

    Article  MathSciNet  Google Scholar 

  11. Microstrain. 3DM-GX1 Datasheet (2010)

  12. Mohr, B.B., Fitzpatrick, D.L.: Micro air vehicle navigation system. IEEE Aerosp. Electron. Syst. Mag. 23(4), 19–24 (2008)

    Article  Google Scholar 

  13. Mokhtari, A., Benallegue, A.: Dynamic feedback controller of euler angles and wind parameters estimation for a quadrotor unmanned aerial vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2359–2366 (2004)

  14. Monteriu, A., Asthan, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: theoretical aspects (part i). In: 2007 IEEE International Conference on Robotics and Automation, pp. 2736–2743 (2007)

  15. Monteriù, A., Asthana, P., Valavanis, K.P., Longhi, S.: Real-time model-based fault detection and isolation for ugvs. J. Intell. Robot. Syst. 56(4), 425–439 (2009)

    Article  MATH  Google Scholar 

  16. Patton, R.J., Frank, P.M., Clark, R.N.: Fault diagnosis in dynamic systems: theory and application. Prentice-Hall, Inc. (1989)

  17. Patton, R.J., Frank, P.M., Clark, R.N.: Issues of Fault Diagnosis for Dynamic Systems. Springer (2000)

  18. Qi, J., Jiang, Z., Zhao, X., Han, J.: UKF-based rotorcraft UAV Fault adaptive control for actuator failure. In: ROBIO 2007 IEEE International Conference on Robotics and Biomimetics, 2007, pp. 1545–1550 (2007)

  19. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H  ∞  control structure for a quadrotor helicopter. Automatica 46(1):29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rago, C., Prasanth, R., Mehra, R.K., Fortenbaugh, R., S.S.C. Inc, Woburn, M.A.: Failure detection and identification and fault tolerant control using the IMM-KF with applications to the Eagle-Eye UAV. In: Proceedings of the 37th IEEE Conference on Decision and Control, 1998, vol. 4 (1998)

  21. Rauch, H.E.: Intelligent fault diagnosis and control reconfiguration. IEEE Control Syst. Mag. 14(3), 6–12 (1994)

    Article  Google Scholar 

  22. Salazar, S., Romero, H., Lozano, R., Castillo, P.: Modeling and real-time stabilization of an aircraft having eight rotors. J. Intell. Robot. Syst. 54(1), 455–470 (2009)

    Article  Google Scholar 

  23. Tayebi, A., McGilvray, S.: Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  24. Thau, F.E.: Observing the state of non-linear dynamic systems. Int. J. Control 17(3), 471–479 (1973)

    Article  MATH  Google Scholar 

  25. Valavanis, K.P., Gracanin, D., Matijasevic, M., Kolluru, R., Demetriou, G.A.: Control architectures for autonomous underwater vehicles. IEEE Control Syst. Mag. 17(6), 48–64 (1997)

    Article  Google Scholar 

  26. Zhang, X., Polycarpou, M.M., Parisini, T.: Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation. Automatica 46(2), 290–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauro Longhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freddi, A., Longhi, S. & Monteriù, A. A Diagnostic Thau Observer for a Class of Unmanned Vehicles. J Intell Robot Syst 67, 61–73 (2012). https://doi.org/10.1007/s10846-012-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9650-4

Keywords

Navigation