Skip to main content
Log in

Control and Navigation Framework for Quadrotor Helicopters

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the development of a nonlinear quadrotor simulation framework together with a nonlinear controller. The quadrotor stabilization and navigation problems are tackled using a nested loops control architecture. A nonlinear Backstepping controller is implemented for the inner stabilization loop. It asymptotically tracks reference attitude, altitude and heading trajectories. The outer loop controller generates the reference trajectories for the inner loop controller to reach the desired waypoint. To ensure boundedness of the reference trajectories, a PD controller with a saturation function is used for the outer loop. Due to the complexity involved in controller development and testing, a simulation framework has been developed. It is based on the Gazebo 3D robotics simulator and the Open Dynamics Engine (ODE) library. The framework can effectively facilitate the development and validation of controllers. It has been released and is available at Gazebo quadrotor simulator (2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gazebo quadrotor simulator. Available online http://sourceforge.net/projects/gazebo-quad-sim. Accessed 10 Mar 2012

  2. Hoffmann, G., Waslander, S., Vitus, M., Huang, H., Gillula, J., Pradeep, V., Tomlin, C.: Stanford testbed of autonomous rotorcraft for multi-agent control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 404–405 (2009)

  3. Bouabdallah, S., Noth, A., Siegwart, R.: Pid vs lq control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, (IROS 2004), Proceedings, vol. 3, pp. 2451–2456. 2 Sept – Oct (2004)

  4. Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Robotics and Automation 2005. ICRA 2005, pp. 2247–2252 (2005)

  5. Mokhtari, A., Benallegue, A., Daachi, B.: Robust feedback linearization and gh infin; controller for a quadrotor unmanned aerial vehicle. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, (IROS 2005), pp. 1198–1203 (2005)

  6. Waslander, S., Hoffmann, G., Jang, J.S., Tomlin, C.: Multi-agent quadrotor testbed control design: integral sliding mode vs. reinforcement learning. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, (IROS 2005), pp. 3712–3717 (2005)

  7. Khalil, H.: Nonlinear Systems. Prentice Hall (2002)

  8. Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260 (2006)

  9. Colorado, J., Barrientos, A., Martinez, A., Lafaverges, B., Valente, J.: Mini-quadrotor attitude control based on hybrid backstepping amp; frenet-serret theory. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1617–1622 (2010)

  10. Mancini, A., Cesetti, A., Iual, A., Frontoni, E., Zingaretti, P., Longhi, S.: A framework for simulation and testing of uavs in cooperative scenarios. J. Intell. Robot. Syst. 54, 307–329 (2009)

    Article  Google Scholar 

  11. Rotorlib: Available online http://www.rtdynamics.com. Accessed 10 Mar 2012

  12. Jsbsim: Available online http://jsbsim.sourceforge.net. Accessed 10 Mar 2012

  13. Flightgear: Available online http://www.flightgear.org. Accessed 10 Mar 2012

  14. Gazebo 3d Robotics Simulator: Available online http://playerstage.sourceforge.net/gazebo/gazebo.html. Accessed 10 Mar 2012

  15. Open Dynamics Engine Library: Available online http://www.ode.org/. Accessed 10 Mar 2012

  16. Gazebo Quad Sim: Available online http://sourceforge.net/projects/gazeboquadrotor. Accessed 10 Mar 2012

  17. Lee, D., Jin Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7, 419–428 (2009)

    Article  Google Scholar 

  18. Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. Ph.D. dissertation, Lausanne (2007)

  19. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  20. Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and adaptive control design, ser. Adaptive and learning systems for signal processing, communications, and control. Wiley (1995)

  21. Robot Operating System: Available online http://www.ros.org/. Accessed 10 Mar 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Nagaty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaty, A., Saeedi, S., Thibault, C. et al. Control and Navigation Framework for Quadrotor Helicopters. J Intell Robot Syst 70, 1–12 (2013). https://doi.org/10.1007/s10846-012-9789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9789-z

Keywords

Navigation