Skip to main content
Log in

Integrated Obstacle Avoidance and Path Following Through a Feedback Control Law

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The article proposes a novel approach to path following in the presence of obstacles with unique characteristics. First, the approach proposes an integrated method for obstacle avoidance and path following based on a single feedback control law, which produces commands to actuators directly executable by a robot with unicycle kinematics. Second, the approach offers a new solution to the well–known dilemma that one has to face when dealing with multiple sensor readings, i.e., whether it is better, to summarize a huge amount of sensor data, to consider only the closest sensor reading, to consider all sensor readings separately to compute the resulting force vector, or to build a local map. The approach requires very little memory and computational resources, thus being implementable even on simpler robots moving in unknown environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkin, R.C.: Motor schema based mobile robot navigation. Int. J. Rob. Res. 8(4), 92–112 (1989)

    Article  Google Scholar 

  2. Arras, K., Persson, J., Tomatis, N., Siegwart, R.: Real-time obstacle avoidance for polygonal robots with a reduced dynamic window. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA02, vol. 3, pp. 3050–3055 (2002)

  3. Bandyophadyay, T., Sarcione, L., Hover, F.S.: A simple reactive obstacle avoidance algorithm and its application in Singapore harbor. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) FSR, Springer Tracts in Advanced Robotics, vol. 62, pp. 455–465. Springer (2009)

  4. Bianco, G., Fiorini, P.: Visual avoidance of moving obstacles based on vector field disturbances. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA01, vol. 3, pp. 2704–2709 (2001)

  5. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  6. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Rob. Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  7. Campani, M., Capezio, F., Rebora, A., Sgorbissa, A., Zaccaria, R.: A minimalist approach to path following among unknown obstacles. In: Proc. of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS2010, pp. 3604–3610 (2010). doi:10.1109/IROS.2010.5649167

  8. Capezio, F., Sgorbissa, A., Zaccaria, R.: GPS-based localization for a surveillance UGV in outdoor areas. In: Proc. of the Fifth International Workshop on Robot Motion and Control, 2005, RoMoCo ’05, pp. 157–162. Lake Hotel Dymaczewo, Poland (2005)

    Chapter  Google Scholar 

  9. Casalino, G., Aicardi, M., Bicchi, A., Balestrino, A.: Closed loop steering and path-following for unicycle-like vehicles: a simple Lyapunov function based approach. IEEE Robot. Autom. Mag. 2(1), 2735 (1995)

    Google Scholar 

  10. Castelnovi, M., Musso, P., Sgorbissa, A., Zaccaria, R.: Surveillance robotics: analyzing scenes by colors analysis and clustering. In: Proc. of the 2003 IEEE Int’l Symp. on Computational Intelligence in Robotics and Automation, vol. 1, pp. 229–234. Kobe, Japan (2003)

    Chapter  Google Scholar 

  11. Damas, B., Santos-Victor, J.: Avoiding moving obstacles: the forbidden velocity map. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 4393–4398 (2009)

  12. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  13. Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA07, pp. 1610–1616 (2007)

  14. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  15. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA91, vol. 2, pp. 1398–1404 (1991)

  16. Kurozumi, R., Yamamoto, T.: Implementation of an obstacle avoidance support system using adaptive and learning schemes on electric wheelchairs. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 1108–1113 (2005)

  17. Lamiraux, F., Bonnafous, D., Lefebvre, O.: Reactive path deformation for nonholonomic mobile robots. IEEE Trans. Robot. 20(6), 967–977 (2004)

    Article  Google Scholar 

  18. Lapierre, L., Zapata, R., Lepinay, P.: Simulatneous path following and obstacle avoidance control of a unicycle-type robot. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA07, pp. 2617–2622 (2007)

  19. Li, Y., Li, C., Song, R.: A new hybrid algorithm of dynamic obstacle avoidance based on dynamic rolling planning and RBFNN. In: Proc. of the IEEE International Conference on Robotics and Biomimetics, ROBIO 2007, pp. 2064–2068 (2007)

  20. Linhui, L., Mingheng, Z., Lie, G., Yibing, Z.: Stereo vision based obstacle avoidance path-planning for cross-country intelligent vehicle. In: Proc. of the Sixth Int’l Conf. on Fuzzy Systems and Knowledge Discovery, FSKD ’09, pp. 463–467 (2009)

  21. Lumelsky, V., Stepanov, A.: Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mastrogiovanni, F., Paikan, A., Sgorbissa, A.: Semantic-aware real-time scheduling in robotics. IEEE Trans. Robot. 1–18 (2012). doi:10.1109/TRO.2012.2222273

    Google Scholar 

  23. Minguez, J.: Integration of planning and reactive obstacle avoidance in autonomous sensor-based navigation. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 2486–2492 (2005)

  24. Minguez, J.: The obstacle-restriction method for robot obstacle avoidance in difficult environments. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005, pp. 2284–2290 (2005)

  25. Morro, A., Sgorbissa, A., Zaccaria, R.: Path following for unicycle robots with an arbitrary path curvature. IEEE Trans. Robot. 27(5), 1016–1023 (2011)

    Article  Google Scholar 

  26. Nam, Y.S., Lee, B.H., Kim, M.S.: View-time based moving obstacle avoidance using stochastic prediction of obstacle motion. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA96, vol. 2, pp. 1081–1086 (1996)

  27. Ogren, P., Leonard, N.: A convergent dynamic window approach to obstacle avoidance. IEEE Trans. Robot. 21(2), 188–195 (2005)

    Article  Google Scholar 

  28. Piaggio, M., Sgorbissa, A.: AI-cart: an algorithm to incrementally calculate artificial potencial fields in real-time. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA98, pp. 238–243. Monterey, CA (1998)

  29. Piaggio, M., Sgorbissa, A., Zaccaria, R.: Autonomous navigation and localization in service mobile robotics. In: Proc. of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2001, vol. 4, pp. 2024–2029 (2001)

  30. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA93, vol. 2, pp. 802–807 (1993)

  31. Sgorbissa, A., Villa, A., Vargiu, A., Zaccaria, R.: A lyapunov-stable, sensor-based model for real-time path-tracking among unknown obstacles. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 2946–2951. St. Louis, MO, USA (2009)

  32. Sgorbissa, A., Zaccaria, R.: The artificial ecosystem: a distributed approach to service robotics. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA ’04, vol. 4, pp. 3531–3536 (2004)

  33. Sgorbissa, A., Zaccaria, R.: Planning and obstacle avoidance in mobile robotics. Robot. Auton. Syst. 60(4), 628–638 (2012)

    Article  Google Scholar 

  34. Simmons, R.: The curvature-velocity method for local obstacle avoidance. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA96, vol. 4, pp. 3375–3382 (1996)

  35. Soetanto, D., Lapierre, L., Pascoal, A.: Adaptive nonsingular path-following control of dynamic wheeled robots. In: Proc. of the 11th Int. Conf. on Advanced Robotics, ICAR’03. Coimbra, Portugal (2003)

  36. Ulrich, I., Borenstein, J.: VFH+: reliable obstacle avoidance for fast mobile robots. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA98, vol. 2, pp. 1572–1577 (1998)

  37. Ulrich, I., Borenstein, J.: VFH ∗ : local obstacle avoidance with look-ahead verification. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA00, vol. 3, pp. 2505–2511 (2000)

  38. de Wit, C.C., Khennouf, H., Samson, C., Sordalen, O.: Recent trends in mobile robots, chap. Nonlinear control design for mobile robots. World Scientific Series in Robotics and Automated Systems. Singapore (1993)

  39. Zhang, F., O’Connor, A., Luebke, D., Krishnaprasad, P.: Experimental study of curvature-based control laws for obstacle avoidance. In: Proc. of the IEEE International Conference on Robotics and Automation, ICRA04, vol. 4, pp. 3849–3854 (2004)

  40. Zhu, Q.: Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation. IEEE Trans. Robot. Autom. 7(3), 390–397 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sgorbissa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgorbissa, A., Zaccaria, R. Integrated Obstacle Avoidance and Path Following Through a Feedback Control Law. J Intell Robot Syst 72, 409–428 (2013). https://doi.org/10.1007/s10846-012-9806-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9806-2

Keywords

Navigation