Skip to main content

Advertisement

Log in

On the Complete Coverage Path Planning for Mobile Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a generalized complete coverage path planning (CCPP) algorithm and its implementation for a mobile robot. The proposed planner contains two concerns: 1) low working time or low energy consumption, and 2) high human safety. For the first concern, we design the optimal path by incorporating two factors: time and energy costs. Describing the working time and energy in terms of a turning parameter simplifies the optimal path design either for minimizing the time or energy cost. For obstacle avoidance in the CCPP, fixed or moving objects are avoided by proposing a field method describing the effects of factors such as working dangerousness and difficulty on the current robot navigation. The human safety is simultaneously guaranteed by this method. Furthermore, a backstepping controller considering constraints imposed on the control input is established to track the optimal route. An implementation of the proposed CCPP for the experimentally mobile robot equipped with this controller is presented; the verification results demonstrate significant performance and practicality of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001)

    Article  Google Scholar 

  2. Zu, L., Wang, H., Yue, F.: Localization for robot mowers covering unmarked operational area. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst., pp. 2197–2202 (2004)

  3. Lee, T.K., Baek, S.H., Oh, S.Y., Choi, Y.H.: Complete coverage algorithm based on linked smooth spiral paths for mobile robots. In: Proc. Int. Conf. Control, Automation, Robotics and Vision, pp. 609–614 (2010)

  4. Yang, S.X., Luo, C.: A neural network approach to complete coverage path planning. IEEE Trans. Syst. Man Cybern. 34(1), 718–725 (2004)

    Article  Google Scholar 

  5. Luo, C., Yang, S.X., Stacey, D.A., Jofriet, J.C.: A solution to vicinity problem of obstacles in complete coverage path planning. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 612–617 (2002)

  6. Qiu, X., Song, J., Zhang, X., Liu, S.: A complete coverage path planning method for mobile robot in uncertain environments. In: Proc. World Congress on Intelligent Control and Automation, pp. 8892–8896 (2006)

  7. Qiu, X., Liu, S., Yang, S.X.: A rolling method for complete coverage path planning in uncertain environments. In: Proc. IEEE Int. Conf. Robotics and Biomimetics, pp. 146–151 (2004)

  8. Luo, C., Yang, S.X., Stacey, D.A.: Real-time path planning with deadlock avoidance of multiple cleaning robots. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 4080–4085 (2003)

  9. Sipahioglu, A., Kirlik, G., Parlaktuna, O., Yazici, A.: Energy constrained multi-robot sensor-based coverage path planning using capacitated arc routing approach. Robot. Auton. Syst. 58, 529–538 (2010)

    Article  Google Scholar 

  10. Yao, Z.: Finding efficient robot path for the complete coverage of a known space. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 3369–3374 (2006)

  11. Jimenez, P.A., Shirnzadeh, B., Nicholson, A., Alici, G.: Optimal area covering using genetic algorithms. In: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 1–5 (2007)

  12. Wang, M., Tan, S., Yan, L.: Complete coverage path planning of wall-cleaning robot using visual sensor. In: Proc. Int. Conf. Electronic Measurement and Instruments, pp. 159–164 (2007)

  13. Zhang, G., Ferrari, S., Qian, M.: An information roadmap method for robotic sensor path planning. J. Intell. Robot. Syst. 56(1–2), 69–98 (2009)

    Article  MATH  Google Scholar 

  14. Liu, Y., Lin, X., Zhu, S.: Combined coverage path planning for autonomous cleaning robots in unstructured environments. In: Proc. World Congress on Intelligent Control and Autom., pp. 8271–8276 (2008)

  15. De Carvalho, R.N., Vidal, H.A., Vieira, P., Ribeiro, M.I.: Complete coverage path planning and guidance for cleaning robots. In: Proc. IEEE Int. Sym. Industrial Electronics, pp. 677–682 (1997)

  16. Liu, S., Sun, D., Zhu, C.: Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Trans. Mechatron. 16(6), 1021–1032 (2011)

    Article  Google Scholar 

  17. Mao, Y., Dou, L., Chen, J., Fang, H., Zhang, H., Cao, H.: Combined complete coverage path planning for autonomous mobile robot in indoor environment. In: Proc. Asian Control Conf., pp. 1468–1473 (2009)

  18. Luo, C., Yang, S.X.: A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans. Neural Netw. 19(7), 1279–1298 (2008)

    Article  Google Scholar 

  19. Oh, J.S., Choi, Y.H., Park, J.B., Zheng, Y.F.: Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Trans. Ind. Electron. 51(3), 718–726 (2004)

    Article  Google Scholar 

  20. Garcia, E., Gonzalez de Santos, P.: Mobile-robot navigation with complete coverage of unstructured environments. Robot. Auton. Syst. 46, 195–204 (2004)

    Article  Google Scholar 

  21. Shair, S., Chandler, J.H., Gonz’alez-Villela, V.J., Parkin, R.M., Jackson, M.R.: The use of aerial images and GPS for mobile robot waypoint navigation. IEEE/ASME Trans. Mechatron. 13(6), 692–699 (2008)

    Article  Google Scholar 

  22. Chwa, D.: Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(6), 1285–1295 (2010)

    Article  Google Scholar 

  23. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Trans. Control Syst. Technol. 18(5), 1199–1206 (2010)

    Article  Google Scholar 

  24. Yavuz, H., Bradshaw, A.: A new conceptual approach to the design of hybrid control architecture for autonomous mobile robots. J. Intell. Robot. Syst. 34(1), 1–26 (2002)

    Article  MATH  Google Scholar 

  25. Shiu, B.M., Lin, C.L.: Design of an autonomous lawn mower with optimal route planning. In: Proc. IEEE Int. Conf. Industrial Technology, pp. 1–6 (2008)

  26. Hsu, P.M., Lin, C.L.: Optimal planner for lawn mowers. In: Proc. IEEE Int. Conf. Cybernetics Intelligent Syst., pp. 1–7 (2010)

  27. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)

    Article  Google Scholar 

  28. Yamamoto, Y., Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. IEEE Trans. Autom. Control 39(6), 1326–1332 (1994)

    Article  MATH  Google Scholar 

  29. Do, K.D., Jiang, Z.P., Pan, J.: Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Trans. Autom. Control 49(7), 1147–1152 (2004)

    Article  MathSciNet  Google Scholar 

  30. Mao, Y., Dou, L., Chen, J., Fang, H., Zhang, H., Cao, H.: Combined complete coverage path planning for autonomous mobile robot in indoor environment. In: Proc. Asian Control Conf., pp. 1468–1473 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Liang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, PM., Lin, CL. & Yang, MY. On the Complete Coverage Path Planning for Mobile Robots. J Intell Robot Syst 74, 945–963 (2014). https://doi.org/10.1007/s10846-013-9856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9856-0

Keywords

Mathematics Subject Classification (2010)

Navigation