Skip to main content
Log in

Adaptive Neural Network Finite-Time Control for Uncertain Robotic Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

An adaptive neural network finite-time controller (NNFTC) for a class of uncertain nonlinear systems is proposed by using the backstepping method, which employs an adaptive neural network (NN) system to approximate the structure uncertainties and uses a variable structure term to compensate the approximation errors, thus improving the robustness of the system to external disturbances. The controller is then applied to uncertain robotic manipulators, with a control objective of driving the system state to the original equilibrium point. It is proved that the closed-loop system is finite-time stable. Moreover, simulated and experimental results indicate that the proposed NNFTC is effective and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhat, S.P., Bernstein, D.S.: Lyapunov analysis of finite-time differential equations. In: Proceedings of the American Control Conference 1995, vol. 1833, pp. 1831–1832 (1995). 21–23 Jun 1995

  2. Bhat, S.P., Bernstein, D.S.: Finite-time stability of homogeneous systems. In: Proceedings of the American Control Conference 1997, vol. 2514, pp. 2513–2514 (1997). 4–6 Jun 1997

  3. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signal 17(2), 101–127 (2005). doi:10.1007/s00498-005-0151-x

    Article  MATH  MathSciNet  Google Scholar 

  6. Yiguang, H., Zhong-Ping, J.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Autom. Control 51(12), 1950–1956 (2006)

    Article  Google Scholar 

  7. Zhang, X., Feng, G., Sun, Y.: Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48(3), 499–504 (2012). doi:10.1016/j.automatica.2011.07.014

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005). doi:10.1016/j.automatica.2004.11.036

    Article  MATH  MathSciNet  Google Scholar 

  9. Ji, L., Chunjiang, Q.: Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans. Autom. Control 51(5), 879–884 (2006)

    Article  Google Scholar 

  10. Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 243–253 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Su, Y.: Global continuous finite-time tracking of robot manipulators. Int. J. Robust Nonlinear Cont. 19(17), 1871–1885 (2009). doi:10.1002/rnc.1406

    Article  MATH  Google Scholar 

  12. Zhao, D., Li, S., Zhu, Q., Gao, F.: Robust finite-time control approach for robotic manipulators. IET Cont. Theor. Appl. 4(1), 1–15 (2010)

    Article  MathSciNet  Google Scholar 

  13. Su, Y., Zheng, C.: Global finite-time inverse tracking control of robot manipulators. Robot. Comput. Integr. Manuf. 27(3), 550–557 (2011). doi:10.1016/j.rcim.2010.09.010

    Article  Google Scholar 

  14. de Jesus Rubio, J., Torres, C., Aguilar, C.: Optimal control based in a mathematical model applied to robotic arms. Int. J. Innov. Comp. Inform. Control 7(8), 5045–5062 (2011)

    Google Scholar 

  15. Torres, C., Jesús Rubio, J., Aguilar-Ibáñez, C., Pérez-Cruz, J.H.: Stable optimal control applied to a cylindrical robotic arm. Neural Comput. Appl. 1–8 (2012). doi:10.1007/s00521-012-1294-6

  16. Liu, H., Zhang, T.: Fuzzy sliding mode control of robotic manipulators with kinematic and dynamic uncertainties. J. Dyn. Syst. Meas. Control 134(6), 061007 (2012)

    Article  Google Scholar 

  17. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005). doi:10.1016/j.automatica.2005.07.001

    Article  MATH  MathSciNet  Google Scholar 

  18. Jesus Rubio, J., Soriano, L.A.: An asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms. Int. J. Innov. Comp. Inform. Control 6(10), 4513–4526 (2010)

    Google Scholar 

  19. de Jesus Rubio, J.: SOFMLS: online self-organizing fuzzy modified least-squares network. IEEE Trans. Fuzzy Syst. 17(6), 1296–1309 (2009). doi:10.1109/tfuzz.2009.2029569

    Article  Google Scholar 

  20. Chen, C.-W.: Stability analysis and robustness design of nonlinear systems: an NN-based approach. Appl. Soft Comput. 11(2), 2735–2742 (2011) doi:10.1016/j.asoc.2010.11.004

    Article  Google Scholar 

  21. Yeh, K., Chen, C.-W., Lo, D., Liu, K.F.: Neural-network fuzzy control for chaotic tuned mass damper systems with time delays. J. Vib. Control 18(6), 785–795 (2012). doi:10.1177/1077546311407538

    Article  Google Scholar 

  22. Hsu, C.-F., Lin, C.-M., Yeh, R.-G.: Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems. Appl. Softw. Comput. 13(4), 1620–1626 (2013). doi:10.1016/j.asoc.2012.12.028

    Article  Google Scholar 

  23. Perez-Cruz, J.H., Rubio, J.D.J., Ruiz-Velzquez, E., Solis-Perales, G.: Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown deadzone. Abstr. Appl. Anal. 2012, 18. (2012). doi:10.1155/2012/471281

    Article  Google Scholar 

  24. Pérez-Cruz, J.H., Ruiz-Velázquez, E., Rubio, J.D.J., Padilla, C.A.D.A.: Robust adaptive neurocontrol of siso nonlinear systems preceded by unknown deadzone. Math. Probl. Eng. 2012, 23 (2012). doi:10.1155/2012/342739

  25. Huang, S.N., Tan, K.K., Lee, T.H.: Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4–6), 885–894 (2008). doi:10.1016/j.neucom.2007.02.012

    Article  Google Scholar 

  26. Peng, J., Wang, J., Wang, Y.: Neural network based robust hybrid control for robotic system: an Hinf approach. Nonlinear Dyn. 65(4), 421–431 (2011). doi:10.1007/s11071-010-9902-4

    Article  MATH  MathSciNet  Google Scholar 

  27. Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011). doi:10.1016/j.neucom.2011.03.015

    Article  Google Scholar 

  28. Zuo, Y., Wang, Y., Liu, X., Yang, S.X., Huang, L., Wu, X., Wang, Z.: Neural network robust \(\textrm{H}_{\infty} \) tracking control strategy for robot manipulators. Appl. Math. Model. 34(7), 1823–1838 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rubio, J.: Modified optimal control with a back propagation network for robotic arms. IET Control Theory Appl. 6(14), 2216–2225 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang, L.Y., Chai, T.Y., Zhai, L.F.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009). doi:10.1109/tie.2008.2011350

    Article  Google Scholar 

  31. Liu, H., Zhang, T.: Neural network-based robust finite-time control for robotic manipulators considering actuator dynamics. Robot. Comput. Integr. Manuf. 29(2), 301–308 (2013). doi:10.1016/j.rcim.2012.09.002

    Article  Google Scholar 

  32. Haimo, V.T.: Finite time controllers. SIAM J. Control. Optim. 24(4), 760–770 (1986). doi:10.1137/0324047

    Article  MATH  MathSciNet  Google Scholar 

  33. De Jesús Rubio, J., Yu, W.: A new discrete-time sliding-mode control with time-varying gain and neural identification. Int. J. Control 79(4), 338–348 (2006). doi:10.1080/00207170600566188

    Article  MATH  Google Scholar 

  34. Rodríguez, F., Jesús Rubio, J., Gaspar, C.M., Tovar, J., Armendáriz, M.M.: Hierarchical fuzzy CMAC control for nonlinear systems. Neural Comput. Appl. 1–9 (2013). doi:10.1007/s00521-013-1423-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhang, T. Adaptive Neural Network Finite-Time Control for Uncertain Robotic Manipulators. J Intell Robot Syst 75, 363–377 (2014). https://doi.org/10.1007/s10846-013-9888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9888-5

Keywords

Navigation