Skip to main content
Log in

Adaptive Neural Control of a Hypersonic Vehicle in Discrete Time

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The article investigates the discrete-time controller for the longitudinal dynamics of the hypersonic flight vehicle with throttle setting constraint. Based on functional decomposition, the dynamics can be decomposed into the altitude subsystem and the velocity subsystem. Furthermore, the discrete model could be derived using the Euler expansion. For the velocity subsystem, the controller is proposed by estimating the system uncertainty and unknown control gain separately with neural networks. The auxiliary error signal is designed to compensate the effect of throttle setting constraint. For the altitude subsystem, the desired control input is approximated by neural network while the error feedback is synthesized for the design. The singularity problem is avoided. Stability analysis proves that the errors of all the signals in the system are uniformly ultimately bounded. Simulation results show the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, S., Wang, D.: Adversarial ground target tracking using UAVs with input constraints. J. Intell. Robot. Syst. 65(1–4), 521–532 (2012)

    Article  MATH  Google Scholar 

  2. Zhu, S., Wang, D., Low, C.: Cooperative control of multiple uavs for source seeking. J. Intell. Robot. Syst. 70, 293–301 (2013)

    Article  Google Scholar 

  3. Zhu, S., Wang, D., Low, C.: Ground target tracking using uav with input constraints. J. Intell. Robot. Syst. 69, 417–429 (2013)

    Article  Google Scholar 

  4. Nagaty, A., Saeedi, S., Thibault, C., Seto, M., Li, H.: Control and navigation framework for quadrotor helicopters. J. Intell. Robot. Syst. 70(1–4), 1–12 (2013)

    Article  Google Scholar 

  5. González, I., Salazar, S., Torres, J., Lozano, R., Romero, H.: Real-time attitude stabilization of a mini-uav quad-rotor using motor speed feedback. J. Intell. Robot. Syst. 70(1–4), 93–106 (2013)

    Article  Google Scholar 

  6. Santos, O., Romero, H., Salazar, S., Lozano, R.: Real-time stabilization of a quadrotor uav: Nonlinear optimal and suboptimal control. J. Intell. Robot. Syst. 70(1–4), 79–91 (2013)

    Article  Google Scholar 

  7. Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  8. Xu, B., Gao, D., Wang, S.: Adaptive neural control based on HGO for hypersonic flight vehicles. Sci. China Inform. Sci. 54(3), 511–520 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, D., Sun, Z.: Fuzzy tracking control design for hypersonic vehicles via TS model. Sci. China Inform. Sci. 54(3), 521–528 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ataei, A., Wang, Q.: Nonlinear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory A. 6(2), 203–215 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kokotovic, P.: The joy of feedback: nonlinear and adaptive: 1991 bode prize lecture. IEEE Control Syst. Mag. 12, 7–17 (1991)

    Google Scholar 

  12. Gao, D., Sun, Z., Liu, J.: Dynamic inversion control for a class of pure-feedback systems. Asian J. Control 14(2), 605–611 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gao, D., Sun, Z., Xu, B.: Fuzzy adaptive control for pure-feedback system via time scale separation. Int. J. Control Autom. Syst. 11(1), 147–158 (2013)

    Article  Google Scholar 

  14. Fiorentini, L., Serrani, A., Bolender, M., Doman, D.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control Dyn. 32(2), 401–416 (2009)

    Article  Google Scholar 

  15. Xu, B., Huang, X., Wang, D. Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control. doi:10.1002/asjc.679

  16. Mareels, I., Penfold, H., Evans, R.: Controlling nonlinear time-varying systems via euler approximations. Automatica 28(4), 681–696 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: System identification and discrete nonlinear control of miniature helicopters using backstepping. J. Intell. Robot. Syst. 55(2–3), 223–243 (2009)

    Article  MATH  Google Scholar 

  18. Corradini, M., Orlando, G.: Control of mobile robots with uncertainties in the dynamical model: a discrete time sliding mode approach with experimental results. Control Eng. Pract. 10(1), 23–34 (2002)

    Article  Google Scholar 

  19. Sun, F., Li, H., Li, L.: Robot discrete adaptive control based on dynamic inversion using dynamical neural networks. Automatica 38(11), 1977–1983 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stengel, R., Broussard, J., Berry, P.: Digital controllers for vtol aircraft. IEEE Trans. Aerosp. Electron. Syst. AES-14(1), 54–63 (1978)

    Article  Google Scholar 

  21. Xu, B., Sun, F., Yang, C., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu, B., Sun, F., Liu, H., Ren, J.: Adaptive kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory A. 6(4), 487–497 (2012)

    Article  MathSciNet  Google Scholar 

  23. Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nešić, D., Teel, A.: Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model. Automatica 42(10), 1801–1808 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. He, P., Jagannathan, S.: Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(2), 425–436 (2007)

    Article  Google Scholar 

  26. Sarangapani, J.: Neural network control of nonlinear discrete-time systems. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Wang, D., Wang, H. et al. Adaptive Neural Control of a Hypersonic Vehicle in Discrete Time. J Intell Robot Syst 73, 219–231 (2014). https://doi.org/10.1007/s10846-013-9956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9956-x

Keywords

Navigation