Skip to main content
Log in

Analysis and Verification of Repetitive Motion Planning and Feedback Control for Omnidirectional Mobile Manipulator Robotic Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Mobile manipulator robotic systems (MMRSs) composed of a manipulator and a mobile platform are investigated in this paper. In order for the mobile manipulator robotic system (MMRS) to return to its initial state when the manipulator’s end-effector is requested to execute cyclical tasks, a quadratic program (QP) based repetitive motion planning and feedback control (RMPFC) scheme is proposed and analyzed. Such an RMPFC scheme can not only mix motion planning and reactive control, but also consider the physical limits of the robotic system. Mathematically, the efficacy of the RMPFC scheme is verified via gradient dynamics analysis. To further demonstrate the effectiveness of the RMPFC scheme, a kinematically redundant MMRS composed of a three degrees-of-freedom (DOF) planar manipulator and an omnidirectional mobile platform is designed, modeled and analyzed. Then, repetitive motion planning and feedback control for the designed omnidirectional MMRS is studied. Besides, a numerical algorithm is developed and presented to solve the QP and resolve the redundancy of the robotic system. Moreover, computer simulations are comparatively performed on such an omnidirectional MMRS, and simulation results substantiate the effectiveness, accuracy and superiority of the proposed RMPFC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Guo, D., Ma, S.: Different-level simultaneous minimization of joint-velocity and joint-torque for redundant robot manipulators. J. Intell. Robot. Syst. 72(3–4), 301–323 (2013)

    Article  Google Scholar 

  2. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer (2009)

  3. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer (2008)

  4. Roberts, R.G., Maciejewski, A.A.: Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans. Autom. Control 38(5), 689–699 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Klein, C.A., Ahmed, S.: Repeatable pseudoinverse control for planar kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. 25(12), 1657–1662 (1995)

    Article  Google Scholar 

  6. Zhang, Y., Lv, X., Li, Z., Yang, Z., Chen, K.: Repetitive motion planning of PA10 robot arm subject to joint physical limits and using LVI-based primal-dual neural network. Mechatronics 18(9), 475–485 (2008)

    Article  Google Scholar 

  7. Khoogar, A.R., Tehrani, A.K., Tajdari, M.: A dual neural network for kinematic control of redundant manipulators using input pattern switching. J. Intell. Robot. Syst. 63(1), 101–113 (2011)

    Article  Google Scholar 

  8. Pott, P.P., Wagner, A., Badreddin, E., Weiser, H.-P., Schwarz, M.L.R.: Inverse dynamic model and a control application of a novel 6-DOF hybrid kinematics manipulator. J. Intell. Robot. Syst. 63(1), 3–23 (2011)

    Article  Google Scholar 

  9. Ning, K., Kulvicius, T., Tamosiunaite, M., Wörgötter, F.: A novel trajectory generation method for robot control. J. Intell. Robot. Syst. 68(2), 165–184 (2012)

    Article  Google Scholar 

  10. Tchoń, K., Jakubiak, J.: A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators. IEEE Trans. Syst. Man Cybern. B 35(5), 1051–1057 (2005)

    Article  Google Scholar 

  11. Do, K.D., Seet, G.: Motion control of a two-wheeled mobile vehicle with an inverted pendulum. J. Intell. Robot. Syst. 60(3–4), 577–605 (2010)

    Article  MATH  Google Scholar 

  12. Mantegh, I., Jenkin, M.R.M., Goldenberg, A.A.: Path planning for autonomous mobile robots using the boundary integral equation method. J. Intell. Robot. Syst. 59(2), 191–220 (2010)

    Article  MATH  Google Scholar 

  13. Andaluz, V., Carelli, R., Salinas, L., Toibero, J.M., Roberti, F.: Visual control with adaptive dynamical compensation for 3D target tracking by mobile manipulators. Mechatronics 22(4), 491–502 (2012)

    Article  Google Scholar 

  14. Lee, H., Jung, S.: Balancing and navigation control of a mobile inverted pendulum robot using sensor fusion of low cost sensors. Mechatronics 22(1), 95–105 (2012)

    Article  Google Scholar 

  15. Hoy, M., Matveev, A.S., Savkin, A.V.: Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments. Robot. Auton. Syst. 60(10), 1253–1266 (2012)

    Article  Google Scholar 

  16. Jun, B.-H., Lee, J., Lee, P.-M.: Repetitive periodic motion planning and directional drag optimization of underwater articulated robotic arms. Int. J. Control Autom. Syst. 4(1), 42–52 (2006)

    Google Scholar 

  17. Bowling, A., Harmeyer, S.: Repeatable redundant manipulator control using nullspace quasi-velocities. ASME J. Dynam. Syst. Meas. Control 132(3), 031007 (2010)

    Article  Google Scholar 

  18. Zhang, Y., Tan, Z., Chen, K., Yang, Z., Lv, X.: Repetitive motion of redundant robots planned by three kinds of recurrent neural networks and illustrated with a four-link planar manipulator’s straight-line example. Robot. Auton. Syst. 57(6–7), 645–651 (2009)

    Article  Google Scholar 

  19. Zhang, Z., Zhang, Y.: Acceleration-level cyclic-motion generation of constrained redundant robots tracking different paths. IEEE Trans. Syst. Man Cybern. B 42(4), 1257–1269 (2012)

    Article  Google Scholar 

  20. Zhang, Y., Wu, H., Zhang, Z., Xiao, L., Guo, D.: Acceleration-level repetitive motion planning of redundant planar robots solved by a simplified LVI-based primal-dual neural network. Robot. Comput. Int. Manuf. 29(2), 328–343 (2013)

    Article  Google Scholar 

  21. Campion, G., Bastin, G., D’Andréa-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)

    Article  Google Scholar 

  22. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT Press (2004)

  23. Saha, S.K.: Introduction to Robotics. Tata McGraw-Hill Education (2008)

  24. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Education (2008)

  25. Zhang, Y., Yi, C.: Zhang Neural Networks and Neural-Dynamic Method. Nova (2011)

  26. Zhang, Y., Guo, D., Li, K., Li, J.: Manipulability-maximizing self-motion planning and control of redundant manipulators with experimental validation. In: Proceedings of the IEEE International Conference Mechatronics and Automation, pp. 1829–1834 (2012)

  27. He, B.: A new method for a class of linear variational inequalities. Math. Program. 66(1–3), 137–144 (1994)

    Article  MATH  Google Scholar 

  28. Zhang, Z., Zhang, Y.: Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans. Mechatron. 18(2), 674–686 (2013)

    Article  Google Scholar 

  29. Zhang, Y., Li, J., Zhang, Z.: A time-varying coefficient-based manipulability-maximizing scheme for motion control of redundant robots subject to varying joint-velocity limits. Optim. Contr. Appl. Meth. 34(2), 202–215 (2013)

    Article  MATH  Google Scholar 

  30. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, W., Liao, B. et al. Analysis and Verification of Repetitive Motion Planning and Feedback Control for Omnidirectional Mobile Manipulator Robotic Systems. J Intell Robot Syst 75, 393–411 (2014). https://doi.org/10.1007/s10846-014-0022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0022-0

Keywords

Navigation