Skip to main content
Log in

Manipulator Performance Measures - A Comprehensive Literature Survey

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Performance measures are quintessential to the design, synthesis, study and application of robotic manipulators. Numerous performance measures have been defined to study the performance and behavior of manipulators since the early days of robotics; some more widely accepted than others, but their real significance and limitations have not always been well understood. The aimof this survey is to review the definition, classification, scope, and limitations of some of the widely used performance measures. This work provides an extensive bibliography that can be of help to researchers interested in studying and evaluating the performance and behavior of robotic manipulators. Finally, a few recommendations are proposed based on the review so that the most commonly noticed limitations can be avoided when new performance measures are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein, C.A., Blaho, B.E.: Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Robot. Res. 6(2), 72–83 (1987). doi:10.1177/027836498700600206

    Article  Google Scholar 

  2. Tanev, T., Stoyanov, B.: On the performance indexes for robot manipulators. In: Problems of Engineering Cybernetics and Robotics. Sofia (2000)

  3. Merlet, J.P.: Jacobian, manipulability, condition number and accuracy of parallel robots. In: Thrun, S., Brooks, R.,Durrant-Whyte, H. (eds.) Robotics Research, vol. 28. Springer Tracts in Advanced Robotics, pp. 175–184. Springer, Berlin Heidelberg (2007)

  4. Moreno, H.E.A., Saltaren, R., Carrera, I., Puglisi, L., Aracil, R.: Indices de Desempeno de Robots Manipuladores: una revision del Estado del Arte (in Spanish). Rev. Iberoam. Autom. Inform. Ind. 2, 111–122 (2012)

    Article  Google Scholar 

  5. Pai, D.K., Doel, K.v.d.: Performance Measures for Robot Manipulators: A Unied Approach. University of British Coloumbia (1993)

  6. Chang, P.H.: A Dexterity Measure for the Kinematic Control of Robot Manipulator with Redundancy, p. 52. MIT (1988)

  7. Mansouri, I., Ouali, M.: The power manipulability – A new homogeneous performance index of robot manipulators. Robot. Comput. Integr. Manuf. 27(2), 434–449 (2011). doi:10.1016/j.rcim.2010.09.004

    Article  Google Scholar 

  8. Gosselin, C., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. J. Mech. Des. 113(3), 220–226 (1991)

    Article  Google Scholar 

  9. Kucuk, S., Bingul, Z.: Robot workspace optimization based on a novel local and global performance indices. In: Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE pp. 1593–1598 (2005)

  10. Puglisi, L.J., Saltaren, R.J., Moreno, H.A., Cárdenas, P.F., Garcia, C., Aracil, R.: Dimensional synthesis of a spherical parallel manipulator based on the evaluation of global performance indexes. Robot. Auton. Syst. 60(8), 1037–1045 (2012). doi:10.1016/j.robot.2012.05.013

    Article  Google Scholar 

  11. Kucuk, S., Bingul, Z.: Comparative study of performance indices for fundamental robot manipulators. Robot. Auton. Syst. 54(7), 567–573 (2006). doi:10.1016/j.robot.2006.04.002

    Article  Google Scholar 

  12. Lipkin, H., Duffy, J.: Hybrid twist and wrench control for a robotic manipulator. Trans. ASME J. Mech. Transm. Autom. Des. 110, 138–144 (1988)

    Article  Google Scholar 

  13. Ranjbaran, F., Angeles, J., Kecskemethy, A.: On the kinematic conditioning of robotic manipulators. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 3164, pp. 3167–3172 (1996)

  14. Khatib, O.: Inertial Properties in Robotic Manipulation: An Object-Level Framework. Robotics Laboratory, Stanford University (1995)

  15. Cloutier, G.M., Jutard, A., Bétemps, M.: A robot-task conformance index for the design of robotized cells. Robot. Auton. Syst. 13(4), 233–243 (1994). doi:10.1016/0921-8890(94)90010-8

    Article  Google Scholar 

  16. Kumar, A., Waldron, K.J.: The workspace of mechanical manipulator. J. Mech. Des. Trans. ASME 103, 665–672 (1981)

    Article  Google Scholar 

  17. Gupta, K.C., Roth, B.: Design considerations for manipulator workspace, ASME Journal of Mechanical Design 1. ASME J. Mech. Des. 104, 704–711 (1982)

    Article  Google Scholar 

  18. Yang, D.C., Lai, Z.C.: On dexterity of robotic manipulators - service angle. J. Mech. Transm. Autom. Des. 107(2), 262–270 (1985)

    Article  Google Scholar 

  19. Kumar, A., Patel, M.S.: Mapping the manipulator workspace using interactive computer graphics. Int. J. Robot. Res. 5(2), 122–130 (1986). doi:10.1177/027836498600500213

    Article  Google Scholar 

  20. Alameldin, T., Sobh, T.: On the evaluation of reachable workspace for redundant manipulators. In: Paper presented at the Proceedings of the 3rd International Conference on Industrial and engineering applications of artificial intelligence and expert systems, vol. 2 Charleston

  21. Chang-Hwan, C., Hee-Seong, P., Seong-Hyun, K., Hyo-Jik, L., Jong-Kwang, L., Ji-Sub, Y., Byung-Seok, P.: A manipulator workspace generation algorithm using a singular value decomposition. In: International Conference on Control, Automation and Systems, ICCAS 2008, pp. 163–168 (2008)

  22. Jin, Y., Chen, I.-M., Yang, G.: Workspace evaluation of manipulators through finite-partition of SE(3). Robot. Comput.-Integr. Manuf. 27(4), 850–859 (2011). doi:10.1016/j.rcim.2011.01.006

    Article  Google Scholar 

  23. Wang, Z., Ji, S., Li, Y., Wan, Y.: A unified algorithm to determine the reachable and dexterous workspace of parallel manipulators. Robot. Comput.-Integr. Manuf. 26(5), 454–460 (2010). doi:10.1016/j.rcim.2010.02.001

    Article  Google Scholar 

  24. Yang, J., Abdel-Malek, K., Zhang, Y.: On the workspace boundary determination of serial manipulators with non-unilateral constraints. Robot. Comput.-Integr. Manuf. 24(1), 60–76 (2008). doi:10.1016/j.rcim.2006.06.005

    Article  Google Scholar 

  25. Tsai, K.Y., Lee, T.K., Huang, K.D.: Determining the workspace boundary of 6-DOF parallel manipulators. Robotica 24(5), 605–611 (2006). doi:10.1017/s0263574706002682

    Article  Google Scholar 

  26. Alameldin, T., Badler, N., Sobh, T., Mihali, R.: A computational approach for constructing the reachable workspaces for redundant manipulators. Comput. J. 2(1), 48–52 (2003)

    Google Scholar 

  27. Abdel-Malek, K., Yeh, H.-J., Othman, S.: Interior and exterior boundaries to the workspace of mechanical manipulators. Robot. Comput. Integr. Manuf. 16(5), 365–376 (2000). doi:10.1016/S0736-5845(00)00011-9

    Article  Google Scholar 

  28. Abdel-Malek, K., Adkins, F., Yeh, H.-J., Haug, E.: On the determination of boundaries to manipulator workspaces. Robot. Comput. Integr. Manuf. 13(1), 63–72 (1997). doi:10.1016/S0736-5845(96)00023-3

    Article  Google Scholar 

  29. Li, R., Dai, J.S.: Orientation angle workspaces of planar serial three-link manipulators. Sci. China Ser. E Technol. Sci. 52(4), 975–985 (2009)

    Article  Google Scholar 

  30. Vijaykumar, R., Tsai, M., Waldron, K.: Geometric optimization of manipulator structures for working volume and dexterity. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 228–236 (1985)

  31. Abdel-Malek, K.A., Yeh, H.J.: Local dexterity analysis for open kinematic chains. Mech. Mach. Theory 35(1), 131–154 (1998). doi:10.1016/S0094-114X(98)00087-1

    Article  MathSciNet  Google Scholar 

  32. Vinogradov, I.B., Kobrinksi, A.E., Stephenko, Y.E., Tives, L.T.: Details of kinematics of manipulators with the method of volumes. Mekanika Mashin (No 27–28), 5–16 (1971)

  33. Chung, W.J., Chung, W.K., Youm, Y.: New dexterity index based on effective minors for planar redundant manipulators. In: Proceedings of the 1992 lEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1951–1957 (1992)

  34. Patel, S., Sobh, T.: Optimal design of three-link planar manipulators using Grashof’s Criterion. In: Sobh, T., Xiong, X. (eds.) Prototyping of Robotic Systems: Applications of Design and Implementation, p. 321. IGI Global (2012)

  35. Liegeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Syst. Man Cybern. 7(12), 868–871 (1977). doi:10.1109/tsmc.1977.4309644

    Article  MATH  Google Scholar 

  36. Klein, C.A., Huang, C.H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. SMC-13(2), 245–250 (1983). doi:10.1109/tsmc.1983.6313123

    Article  Google Scholar 

  37. Kapoor, C., Cetin, M., Tesar, D.: Performance based redundancy resolution with multiple criteria. In: Design Engineering Technical Conference, DETC98, ASME. Georgia (1998)

  38. Baron, L.: A joint-limits avoidance strategy for arc-welding robots. In: Paper presented at the International Conference on Integrated Design and Manufacturing in Mechanical Engineering. Montreal

  39. Huo, L., Baron, L.: The joint-limits and singularity avoidance in robotic welding. Ind. Robot. Int. J. 35(4), 456–464 (2008). doi:10.1108/01439910810893626

    Google Scholar 

  40. Abdel-Malek, K.A., Yu, W., Yang, J.: Placement of robot manipulators to maximize dexterity. Int. J. Robot. Autom., 19 (2004). doi:10.2316/Journal.206.2004.1.206-2029

    MATH  Google Scholar 

  41. Asada, H., Granito, J.: Kinematic and static characterization of wrist joints and their optimal design. In: Proceedings. IEEE International Conference on Robotics and Automation pp. 244–250 (1985)

  42. Dubey, R., Luh, J.: Redundant robot control for higher flexibility. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 1066–1072 (1987)

  43. Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982). doi:10.1177/027836498200100102

    Article  Google Scholar 

  44. Forsythe, G.E., Moler, C.B.: Computer Solution of Linear Algebraic Systems. Prentice-Hall (1967)

  45. Schwartz, E., Manseur, R., Doty, K.: Noncommensurate systems in robotics. Int. J. Robot. Autom. 17(2), 86–92 (2002)

    Google Scholar 

  46. Yoshikawa, T.: Translational and rotational manipulability of robotic manipulators. In: American Control Conference, pp. 228–233 (1990)

  47. Cardou, P., Bouchard, S., Gosselin, C.: Kinematic-sensitivity indices for dimensionally nonhomogeneous Jacobian Matrices. IEEE Trans. Robot. 26(1), 166–173 (2010). doi:10.1109/tro.2009.2037252

    Article  Google Scholar 

  48. Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993). doi:10.1177/027836499301200101

    Article  Google Scholar 

  49. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 2 edn. Springer (2003)

  50. Angeles, J.: Is there a characteristic length of a rigid-body displacement? Mech. Mach. Theory 41(8), 884–896 (2006)

    Article  MATH  Google Scholar 

  51. Angeles, J., Waseem, K.: The kinetostatic optimization of robotic manipulators: the inverse and the direct problems. J. Mech. Des. 128(1), 168–178 (2006)

    Article  Google Scholar 

  52. Alba-Gomez, O., Wenger, P., Pamanes, A.: Consistent kinetostatic indices for planar 3-DOF parallel manipulators, application to the optimal kinematic inversion. In: Paper presented at the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2005)

  53. Ma, O., Angeles, J.: Optimum design of manipulators under dynamic isotropy conditions. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 471, pp. 470–475 (1993)

  54. Ma, O., Angeles, J.: Optimum architecture design of platform manipulators. In: Fifth International Conference on Advanced Robotics, 1991. Robots in Unstructured Environments, 91 ICAR, vol. 1132, pp. 1130–1135 (1991)

  55. Yoshikawa, T.: Foundations of Robotics: Analysis and Control. MIT Press (1990)

  56. Doty, K.L., Melchiorri, C., Schwartz, E.M., Bonivento, C.: Robot manipulability. IEEE Trans. Robot. Autom. 11(3), 462–468 (1995). doi:10.1109/70.388791

    Article  Google Scholar 

  57. Staffetti, E., Bruyninckx, H., De Schutter, J.: Advances in Robot Kinematics: Theory and Applications. In: Lenarčič, J., Thomas, F. (eds.) p. 536. Springer (2002)

  58. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985). doi:10.1177/027836498500400201

    Article  MathSciNet  Google Scholar 

  59. Paul, R.P., Stevenson, C.N.: Kinematics of robot wrists. Int. J. Robot. Res. 2(1), 31–38 (1983). doi:10.1177/027836498300200103

    Article  Google Scholar 

  60. Elkady, A.Y., Mohammed, M., Sobh, T.: A new algorithm for measuring and optimizing the manipulability index. J. Intell. Robot. Syst. 59(1), 75–86 (2010). doi:10.1007/s10846-009-9388-9

    Article  MATH  Google Scholar 

  61. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley (1989)

  62. Clément, M.G.: The optimum design of robotic manipulators using dexterity indices. Robot. Auton. Syst. 9(4), 213–226 (1992). doi:10.1016/0921-8890(92)90039-2

    Article  Google Scholar 

  63. Forsythe, G.E., Malcolm, M.A., Mole, C.B.: Computer methods for mathematical computations. Prentice-Hal (1977)

  64. Gotlih, K., Troch, I.: Base invariance of the manipulability index. Robotica 22(04), 455–462 (2004). doi:10.1017/S0263574704000220

    Article  Google Scholar 

  65. Tadokoro, S., Kimura, I., Takamori, T.: A dexterity measure for trajectory planning and kinematic design of redundant manipulators. In: 15th Annual Conference of IEE Industrial Electronics Society, IECON 89, vol. 412, pp. 415–420 (1989)

  66. Park, F.C., Brockett, R.W.: Kinematic dexterity of robotic mechanisms. Int. J. Robot. Res. 13(1), 1–15 (1994). doi:10.1177/027836499401300101

    Article  Google Scholar 

  67. Lee, J., Duffy, J., Hunt, K.H.: A practical quality index based on the octahedral manipulator. Int. J. Robot. Res. 17(10), 1081–1090 (1998). doi:10.1177/027836499801701005

    Article  Google Scholar 

  68. Lee, J., Duffy, J., Keler, M.: The optimum quality index for the stability of in–parallel planar platform devices. J. Mech. Des. 121(1), 15–20 (1999). doi:10.1115/1.2829417

    Article  Google Scholar 

  69. Tanev, T., Rooney, J.: Rotation Symmetry Axes and the Quality Index in a 3D Octahedral Parallel Robot Manipulator System. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  70. Jin-Oh, K., Khosla, K.: Dexterity measures for design and control of manipulators. In: Proceedings IROS ’91. IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91. ’Intelligence for Mechanical Systems, vol. 752, pp. 758–763 (1991)

  71. Yoshikawa, T.: Dynamic manipulability of robot manipulators. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 1033–1038 (1985)

  72. Klema, V., Laub, A.: The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control. 25(2), 164–176 (1980). doi:10.1109/tac.1980.1102314

    Article  MATH  MathSciNet  Google Scholar 

  73. Klein, C.A.: Use of redundancy in the design of robotic systems. In: Hanafusa, H., Inoue, H. (eds.) Robotics Research: The Second International Symposium, Kyoto, pp. 207–214. MIT Press, Cambridge (1985)

    Google Scholar 

  74. Yoshikawa, T.: Analysis and design of articulated robot arms from the viewpoint of dynamic manipulability. In: Robotics Research: The Third International Symposium, Gouvieux(Chantilly), pp. 150–156. MIT Press (1986)

  75. Chiu, S.L.: Kinematic characterization of manipulators: an approach to defining optimality. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 822, pp. 828–833 (1988)

  76. Angeles, J., López-Cajún, C.S.: Kinematic isotropy and the conditioning index of serial robotic manipulators. Int. J. Robot. Res. 11(6), 560–571 (1992). doi:10.1177/027836499201100605

    Article  Google Scholar 

  77. Feng, G., Xinjun, L., Gruver, W.A.: The global conditioning index in the solution space of two degree of freedom planar parallel manipulators. In: IEEE International Conference on Intelligent Systems for the 21st Century, Systems, Man and Cybernetics, vol. 4055 pp. 4055–4058 (1995)

  78. Asada, H.: A geometric representation of manipulator dynamics and its application to arm design. J. Dyn. Syst. Meas. Control. Trans. ASME 105(3), 131–135 (1983)

    Article  MATH  Google Scholar 

  79. Asada, H.: Dynamic analysis and design of robot manipulators using inertia ellipsoids. In: Proceedings 1984 IEEE International Conference on Robotics and Automation, pp. 94–102 (1984)

  80. Stocco, L.J., Salcudean, S.E., Sassani, F.: Optimal kinematic design of a haptic pen. IEEE/ASME Trans. Mechatron. 6(3), 210–220 (2001). doi:10.1109/3516.951359

    Article  Google Scholar 

  81. Ma, O., Angeles, J.: The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning. In: Proceedings 1990 IEEE International Conference on Robotics and Automation, vol. 481, pp. 481–486 (1990)

  82. Fan-Tien, C., Chung-Wen, C., Min-Hsiung, H.: In: 26th Annual Conference of the IEEE Redundancy Indices of Kinematically Redundant Manipulators. Industrial Electronics Society, IECON vol. 571, pp. 572–577 (2000)

  83. Van den Doel, K., Pai, D.K.: Constructing Performance Measures for Robot Manipulators. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1602, pp. 1601–1607 (1994)

  84. Roberts, R.G., Maciejewski, A.A.: A local measure of fault tolerance for kinematically redundant manipulators. IEEE Trans. Robot. Autom. 12(4), 543–552 (1996). doi:10.1109/70.508437

    Article  MathSciNet  Google Scholar 

  85. Chang, P.H.: Development of a Dexterity Measure for Kinematically Redundant Manipulators. pp. 496–506. Pittsburgh (1989)

  86. Borrel, P., Liegeois, A.: A study of multiple manipulator inverse kinematic solutions with applications to trajectory planning and workspace determination. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 1180–1185 (1986)

  87. Hashimoto, R.: Harmonic mean type manipulatability index of robotic arms. Trans. Soc. Instrum. Control Eng. 12, 1351–1353 (1985)

    Article  Google Scholar 

  88. Chung, W.J., Chung, W.K., Youm, Y.: Inverse kinematics of planar redundant manipulators using virtual link and displacement distribution schemes. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 921, pp. 926–932 (1991)

  89. Van den Doel, K., Pai, D.K.: Redundancy and non-linearity measures for robot manipulators. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1873, pp. 1873–1880 (1994)

  90. Kaidong, Z., Youheng, X.: Optimum synthesis for workspace dexterity of manipulators. J. Shanghai Jiaotong Univ. 27(4), 40–48 (1993)

    Google Scholar 

  91. Graettinger, T.J., Krogh, B.H.: The acceleration radius: a global performance measure for robotic manipulators. IEEE J. Robot. Autom. 4(1), 60–69 (1988). doi:10.1109/56.772

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarosh Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S., Sobh, T. Manipulator Performance Measures - A Comprehensive Literature Survey. J Intell Robot Syst 77, 547–570 (2015). https://doi.org/10.1007/s10846-014-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0024-y

Keywords

Navigation