Skip to main content
Log in

3D Formation Control of Autonomous Vehicles Based on Null-Space

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new algorithm for controlling a formation of multiple autonomous aerial vehicles based on multiple control objectives. The strategy includes using the null space of a Jacobian matrix to achieve the different control objectives in a non-conflicting way. The mission is split into two elementary tasks, with suitable command references generated for each robot. The commands for each task are combined through a hierarchical method by using the projection of commands onto the null space. The incorporation of ground vehicles in the control scheme is also considered, thus extending the proposed scheme for controlling heterogeneous formations. The stability analysis of the control system shows that such a system is asymptotically stable, and experimental results validate the proposed control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnew, M.S., Canto, P.D., Kitts, C.A., Li, S.: Cluster space control of aerial robots. In: International Conference on Advanced Intelligent Mechatronics (IEEE/ASME), pp. 1305–1310, Montral, Canada (2010)

  2. Antonelli, G., Arrichiello, F., Chiaverini, S.: The null-space-based behavioral control for mobile robots. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 15–20 (2005)

  3. Antonelli, G., Arrichiello, F., Chiaverini, S.: The null-space-based behavioral control for autonomous robotic systems. Intell. Serv. Robot. 1(1), 27–39 (2008)

    Article  Google Scholar 

  4. Antonelli, G., Arrichiello, F., Chiaverini, S.: Experiments of formation control with multirobot systems using the null-space-based behavioral control. IEEE Trans. Control Syst. Technol. 17(5), 1173–1182 (2009)

    Article  Google Scholar 

  5. Antonelli, G., Chiaverini, S.: Kinematic control of platoons of autonomous vehicles. IEEE Trans. Robot. 22(6), 1285–1292 (2006)

    Article  Google Scholar 

  6. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  7. Brandao, A.S., Rampinelli, V.T.L., Martins, F.N., Sarcinelli-Filho, M., Carelli, R.: The multilayer control scheme: A strategy to guide n-robots formations with obstacle avoidance. J. Control Autom. Electr. Syst. 26(3), 201–214 (2015)

    Article  Google Scholar 

  8. Carelli, R.O., Roberti, F., Tosetti, S.: Direct visual tracking control of remote cellular robots. Robot. Auton. Syst. 54(10), 805–814 (2006)

    Article  Google Scholar 

  9. Chen, J., Sun, D., Yang, J., Chen, H.: Leader-follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. Int. J. Robot. Res. 29(6), 727–747 (2010)

    Article  Google Scholar 

  10. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 40(5), 1343–1349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kitts, C.A., Mas, I.: Cluster space specification and control of mobile multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 207–218 (2009)

    Article  Google Scholar 

  12. Liu, J., Wu, J.: Multiagent Robotic Systems. CRC Press (2001)

  13. Park, J., Choi, Y., Chung, W.K., Youm, Y.: Multiple tasks kinematics using weighted pseudo-inverse for kinematically redundant manipulators. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA’01), pp. 4041–4047, Seoul, Korea (2001)

  14. Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M., Carelli, R.: Trajectory tracking of a mini four-rotor helicopter in dynamic environments - a linear algebra approach. Robotica FirstView, 1–25 (2014). doi:10.1017/S0263574714000952

    Google Scholar 

  15. Santana, L.V., Brandao, A.S., Sarcinelli-Filho, M., Carelli, R.: A trajectory tracking and 3d positioning controller for the ar.drone quadrotor. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS’14), pp. 756–767 (2014)

  16. Scharf, D., Hadaegh, F., Ploen, S.: A survey of spacecraft formation flying guidance and control (part ii): Control. In: American Control Conference, pp. 2976–2985, Massachusetts, USA (2004)

  17. Slabaugh, G.G.: Computing euler angles from a rotation matrix. Technical Reports (1999)

  18. Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)

    Article  Google Scholar 

  19. Zhang, Y., Mehrjerdi, H.: A survey on multiple unmanned vehicles formation control and coordination: normal and fault situations. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1087–1096, GA, USA (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Rosales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales, C., Leica, P., Sarcinelli-Filho, M. et al. 3D Formation Control of Autonomous Vehicles Based on Null-Space. J Intell Robot Syst 84, 453–467 (2016). https://doi.org/10.1007/s10846-015-0329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0329-5

Keywords

Navigation