Skip to main content
Log in

Semi-Autonomous Bilateral Teleoperation of Hexapod Robot Based on Haptic Force Feedback

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

With the widespread use of multi-legged robots in various applications, new challenges have arisen in terms of designing their control systems, one of which is posed by the multiple degrees of freedom of the robotic legs. This paper proposes a novel method for the bilateral teleoperation control of a hexapod robot by using a semi-autonomous strategy. In this teleoperation system, the body velocities of the slave robot and the displacements of the master robot are mapped to each other. The angular velocities of the joints of the legs rely on independent planning to achieve a horizontal movement. A controller is designed based on the difference between the expected velocity and the actual velocity of the body, and the difference is fed back to the operator in the form of haptic force. Therefore, the transparency of the control system is guaranteed by increasing the damping compensation both in the master and slave robots. In addition, the stability of the bilateral teleoperation control system of the hexapod robot is guaranteed by passivity theory, and the proposed method is verified by conducting semi-physical simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, X., Yang, F.: Study on hexapod robot manipulation using legs. Robotica 34(2), 468–481 (2014)

    Article  Google Scholar 

  2. Zhuang, H., Gao, H., Deng, Z., et al.: A review of heavy-Duty legged robots. Sci. China. Tech. Sci. 57 (2), 298–314 (2014)

    Article  Google Scholar 

  3. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Informat. 13(1), 48–59 (2017)

    Article  Google Scholar 

  4. Slotine, J.J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  5. He, W., Ge, W., Li, Y., et al.: Model identification and control design for a humanoid robot. IEEE Trans. Syst., Man, Cybern., Syst. 47(1), 45–57 (2017)

    Article  Google Scholar 

  6. Yamaguchi, J., Soga, E., Inoue, S.: Development of a bipedal humanoid robot-Control method of whole body cooperative dynamic biped walking.. In: Proceedings of the IEEE International Conference on Robotics & Automation, pp. 368–347. Detroit, USA (1999)

  7. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(C), 146–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hunt, M.L.: Robotic walking in the real world. Science 339(6126), 1389–1390 (2013)

    Article  Google Scholar 

  9. Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int. J. Robot. Res. 20(6), 419–445 (2001)

    Article  Google Scholar 

  10. Li, W., Ding, L., Gao, H., et al.: Kinematic bilateral teleoperation of wheeled mobile robots subject to longitudinal slippage. IET Control Theory Appl. 10(2), 111–118 (2016)

    Article  MathSciNet  Google Scholar 

  11. Niemeyer, G., Slotine, J.E.: Telemanipulation with time delay. Int. J. Robot. Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  12. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Automat. Contr. 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  13. Passenberg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7), 787–801 (2010)

    Article  Google Scholar 

  14. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst., Man, Cybern. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  15. Tong, S., Sui, S., Li, Y.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy. Syst. 23(4), 729–742 (2015)

    Article  Google Scholar 

  16. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  17. Kurisu, M.: A study on teleoperation system for a hexapod robot-Development of a prototype platform.. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 135–141. Beijing, China (2011)

  18. Nonami, K., Barai, R.K., Irawan, A., Daud, M.R.: Hydraulically Actuated Hexapod Robots: Design, Implementation and Control. Springer, Japan (2014)

    Book  Google Scholar 

  19. Vona III, M.A.: Virtual Articulation and Kinematic Abstraction in Robotics. Doctoral Dissertation, pp 145–173. Massachusetts Institute of Technology, Cambridge (2009)

    Google Scholar 

  20. Ding, X., Zheng, Y., Xu, K.: Wheel-legged hexapod robots: a multifunctional mobile manipulating platform. Chinese J. Mech. Eng. 30(1), 4–7 (2017)

    Article  Google Scholar 

  21. Liu, Y.-C., Chopra, N.: Control of semi-autonomous teleoperation system with time delays. Automatica 49(6), 1553–1565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malysz, P., Sirouspour, S.: A task-space weighting matrix approach to semi-autonomous teleoperation control.. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 645–652. San Francisco, USA (2011)

  23. Mohammadi, A., Tavakoli, M., Marquez, H.J., et al.: Disturbance observer-based control of non-linear haptic teleoperation systems. IET Control Theory Appl. 5(18), 2063–2074 (2011)

    Article  MathSciNet  Google Scholar 

  24. Hart, J.S., Niemeyer, G.: Absolutely stable model-base 2-port force controller for telerobotic applications. Int. J. Robot. Res. 33(6), 847–865 (2014)

    Article  Google Scholar 

  25. Gao, H., Jin, M., Ding, L.: A real-time, high fidelity dynamic simulation platform for hexapod robots on soft terrain. Simul. Model. Pract. Theory 68(9), 125–145 (2016)

    Article  Google Scholar 

  26. Karbasizadeh, N., Aflakiyan, A., Zarei, M., et al.: Dynamic identification of the Novint Falcon haptic device.. In: Proceedings of the IEEE International Conference on Robotics and Mechatronics (2016)

  27. Li, W., Ding, L., Liu, Z.: Kinematic bilateral tele-driving of wheeled mobile robots coupled with slippage. IEEE Trans. Ind. Electron. 64(3), 2147–2157 (2017)

    Article  Google Scholar 

  28. Lee, D., Martinez-Palafox, O., Spong, M.W.: Bilateral teleoperation of a wheeled mobile robot over delayed communication network.. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3298–3303. Orlando, USA (2006)

  29. Wang, Z., Ding, X., Rovetta, A.: Mobility analysis of the typical gait of a radial symmetrical six-legged robot. Mechatronics 21(7), 1133–1146 (2011)

    Article  Google Scholar 

  30. Ding, L., Gao, H., Dong, Z., et al.: Foot-terrain interaction mechanics for multi-legged robots: Modeling and experimental validation. Int. J. Robot Res. 32(13), 1585–1606 (2013)

    Article  Google Scholar 

  31. Li, J., Tavakoli, M., Mendez, V.: Passivity and absolute stability analyses trilateral haptic collaborative systems. J. Intell. Robot. Syst. 78(1), 3–20 (2015)

    Article  Google Scholar 

  32. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2053–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robotics Automat. 9(5), 624–637 (1993)

    Article  Google Scholar 

  34. Hashtrudi-Zaad, K., Salcudean, S.E.: Bilateral parallel force/position teleoperation control. J. Robotic Syst. 19(4), 155–167 (2002)

    Article  MATH  Google Scholar 

  35. Hashemzadeh, F., Tavakoil, M.: Position and force tracking in nonlinear teleoperation systems under varying delays. Robotica 33(4), 1003–1016 (2014)

    Article  Google Scholar 

  36. Nuno, E., Ortega, R., Barabanov, N.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  37. Slawinski, E., Mut, V.: PD-Like controllers for delayed bilateral teleoperation of manipulators robots. Inter. J. Robust Nonlinear Control 25(12), 1801–1815 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22 (2), 269–281 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the “National Natural Science Foundation of China (Grant No. 51575120/51275106)”, “National Basic Research Program of China (Grant No. 2013CB035502)”, “Foundation of Chinese State Key Laboratory of Robotics and Systems (Grant No. SKLRS201501B, SKLRS20164B)”, “Habin Talent Programme for Technological Innovation (No.2015RAXXJ007)” and “Harbin Talent Programme for Distinguished Young Scholars (No. 2014RFYXJ001)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, B., Li, J., Ding, L. et al. Semi-Autonomous Bilateral Teleoperation of Hexapod Robot Based on Haptic Force Feedback. J Intell Robot Syst 91, 583–602 (2018). https://doi.org/10.1007/s10846-017-0738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0738-8

Keywords

Navigation