Skip to main content

Advertisement

Log in

Control for Dynamic Positioning and Way-point Tracking of Underactuated Autonomous Underwater Vehicles Using Sliding Mode Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous Underwater Vehicles (AUVs) are used in many applications such as the exploration of oceans, scientific and military missions, etc. Developing control schemes for AUVs is considered to be a very challenging task due to the complexity of the AUV model, the unmodeled dynamics, the uncertainties and the environmental disturbances. This paper develops a robust control scheme for the dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles. In order to insure the robustness of the proposed controllers, the sliding mode control technique is adopted in the design process. Simulation results are given to validate the proposed controllers. Moreover, studies are presented to evaluate the robustness of the developed controllers with model uncertainties and under different types of disturbances including unknown currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, A.P., Hespanha, J.P.: Position Tracking of Underactuated Vehicles. In: Proceedings of the IEEE 2003 American Control Conference, vol. 3, pp 1988–1993 (2003)

  2. Aguiar, A.P., Pascoal, A.M.: Global Stabilization of an Underactuated Autonomous Underwater Vehicle via Logic-Based Switching. In: 2002 Proceedings of the 41St IEEE Conference on Decision and Control, vol. 3, pp 3267–3272. IEEE (2002)

  3. Aguiar, A.P., Pascoal, A.M.: Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. Int. J. Control. 80(7), 1092–1108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle like vehicles via lyapunov techniques. IEEE Robot. Autom. Mag. 2, 27–35 (1995)

    Article  Google Scholar 

  5. Allotta, B., Bartolini, F., Caiti, A., Costanzi, R., Di Corato, F., Fenucci, D., Gelli, J., Guerrini, P., Monni, N., Munafò, A., et al.: Typhoon at commsnet13: experimental experience on auv navigation and localization. Annu. Rev. Control. 40, 157–171 (2015)

    Article  Google Scholar 

  6. Allotta, B., Caiti, A., Chisci, L., Costanzi, R., Di Corato, F., Fantacci, C., Fenucci, D., Meli, E., Ridolfi, A.: An unscented kalman filter based navigation algorithm for autonomous underwater vehicles. Mechatronics 39, 185–195 (2016)

    Article  Google Scholar 

  7. Allotta, B., Caiti, A., Costanzi, R., Fanelli, F., Fenucci, D., Meli, E., Ridolfi, A.: A new auv navigation system exploiting unscented kalman filter. Ocean Eng. 113, 121–132 (2016)

    Article  Google Scholar 

  8. Antonelli, G.: Underwater Robots. Springer, Berlin (2014)

    Book  Google Scholar 

  9. Antonelli, G., Caccavale, F., Chiaverini, S., Fusco, G.: A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)

    Article  Google Scholar 

  10. Ashrafiuon, H., Muske, K.R., McNinch, L.C., Soltan, R.A.: Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 55(11), 4004–4012 (2008)

    Article  Google Scholar 

  11. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56(8), 670–677 (2008)

    Article  Google Scholar 

  12. Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot. Auton. Syst. 58(1), 16–26 (2010)

    Article  Google Scholar 

  13. Caharija, W., Pettersen, K.Y., Gravdahl, J.T., Børhaug, E.. In: CDC, pp 528–535 (2012)

  14. Chang, W.J., Chen, G.J., Yeh, Y.L.: Fuzzy control of dynamic positioning systems for ships. J. Mar. Sci. Technol. 10(1), 47–53 (2002)

    Google Scholar 

  15. Costanzi, R., Fenucci, D., Giagnoni, S., Munafò, A., Caiti, A.: An evaluation of deep water navigation systems for autonomous underwater vehicles. IFAC-PapersOnLine 50(1), 13,680–13,685 (2017)

    Article  Google Scholar 

  16. Do, K., Jiang, Z., Pan, J., Nijmeijer, H.: Global Output Feedback Universal Controller for Stabilization and Tracking of Underactuated Odin-An Underwater Vehicle. In: 2002 Proceedings of the 41St IEEE Conference on Decision and Control, vol. 1, pp 504–509. IEEE (2002)

  17. Do, K., Pan, J., Jiang, Z.: Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Eng. 31(16), 1967–1997 (2004)

    Article  Google Scholar 

  18. Do, K.D.: Robust adaptive tracking control of underactuated odins under stochastic sea loads. Robot. Auton. Syst. 72, 152–163 (2015)

    Article  Google Scholar 

  19. Dong, W., Guo, Y.: Global time-varying stabilization of underactuated surface vessel. IEEE Trans. Autom. Control 50(6), 859–864 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, Z., Wan, L., Li, Y., Liu, T., Zhuang, J., Zhang, G.: Point stabilization for an underactuated auv in the presence of ocean currents. Int. J. Adv. Robot. Syst. 12(7), 100 (2015)

    Article  Google Scholar 

  21. Encarnacao, P., Pascoal, A.: 3D path following for autonomous underwater vehicle. In: Proceedings of the 39th IEEE Conference on Decision and Control (2000)

  22. Encarnaċao, P., Pascoal, A.: Combined Trajectory Tracking and Path Following: an Application to the Coordinated Control of Autonomous Marine Craft. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp 964–969 (2001)

  23. Fossen, T.I.: Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics AS (2002)

  24. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New York (2011)

    Book  Google Scholar 

  25. Fujii, T., Ura, T.: Development of motion control system for AUV using neural nets. In: Proceedings of the (1990) IEEE Symposium on Autonomous Underwater Vehicle Technology, pp 81–86 (1990)

  26. Gao, J., Liu, C., Proctor, A.: Nonlinear model predictive dynamic positioning control of an underwater vehicle with an onboard usbl system. J. Mar. Sci. Technol. 21(1), 57–69 (2016)

    Article  Google Scholar 

  27. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  28. Jia-Wang, L., Bao-Wei, S., Cheng, S.: Tracking control of autonomous underwater vehicles with internal moving mass. ACTA Automatica Sinica 34(10), 1319–1323 (2008)

    Article  MathSciNet  Google Scholar 

  29. Jiang, Z.P.: Global tracking control of underactuated ships by lyapunov’s direct method. Automatica 38(2), 301–309 (2002)

    Article  MATH  Google Scholar 

  30. Joe, H., Kim, M., Yu, S.C.: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014)

    Article  Google Scholar 

  31. Khaled, N., Chalhoub, N.G.: A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73(1-2), 897–906 (2013)

    Article  Google Scholar 

  32. Lapierre, L., Jouvencel, B.: Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 33 (2), 89–102 (2008)

    Article  Google Scholar 

  33. Lapierre, L., Soetanto, D.: Nonlinear path-following control of an AUV. Ocean Eng. 34(11), 1734–1744 (2007)

    Article  Google Scholar 

  34. Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)

    Article  Google Scholar 

  35. Li, J.H., Lee, P.M.: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng. 32(17), 2165–2181 (2005)

    Article  Google Scholar 

  36. Ma, B.L.: Global κ-exponential asymptotic stabilization of underactuated surface vessels. Syst. Control Lett. 58(3), 194–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive control for autonomous underwater vehicles. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 3, pp 1319–1324 (2008)

  38. Nguyen, K.D., Dankowicz, H.: Adaptive control of underactuated robots with unmodeled dynamics. Robot. Auton. Syst. 64, 84–99 (2015)

    Article  Google Scholar 

  39. Panagou, D., Kyriakopoulos, K.J.: Dynamic positioning for an underactuated marine vehicle using hybrid control. Int. J. Control. 87(2), 264–280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peng, Z., Wang, D., Wang, H., Wang, W.: Distributed coordinated tracking of multiple autonomous underwater vehicles. Nonlinear Dyn. 78(2), 1261–1276 (2014)

    Article  MATH  Google Scholar 

  41. Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control. 74(14), 1435–1446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Prestero, T.T.J.: Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle (2001)

  43. Refsnes, J.E., Sorensen, A.J., Pettersen, K.Y.: Model-based output feedback control of slender-body underactuated AUVs: theory and experiments. IEEE Trans. Control Syst. Technol. 16(5), 930–946 (2008)

    Article  Google Scholar 

  44. Repoulias, F., Papadopoulos, E.: Planar trajectory planning and tracking control design for underactuated AUVs. Ocean Eng. 34(11), 1650–1667 (2007)

    Article  Google Scholar 

  45. Sahu, B.K., Subudhi, B.: Adaptive tracking control of an autonomous underwater vehicle. Int. J. Autom. Comput. 11(3), 299–307 (2014)

    Article  Google Scholar 

  46. Sankaranarayanan, V., Mahindrakar, A.D., Banavar, R.N.: A switched controller for an underactuated underwater vehicle. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2266–2278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Von Alt, C., Allen, B., Austin, T., Stokey, R.: Remote environmental measuring units. In: Proceedings of the 1994 IEEE Symposium on Autonomous Underwater Vehicle Technology, pp 13–19 (1994)

  48. Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1-2), 107–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, J.S., Lee, C.G.: Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans. Robot. Autom. 19(2), 283–295 (2003)

    Article  Google Scholar 

  50. Wang, L., Jia, H.M., Zhang, L.J., Wang, H.B.: Horizontal tracking control for AUV based on nonlinear sliding mode. In: Proceedings of the IEEE International Conference on Information and Automation (ICIA), pp 460–463 (2012)

  51. Watson, S.A., Green, P.N.: Depth control for micro-autonomous underwater vehicles (μ auvs): simulation and experimentation. Int. J. Adv. Robot. Syst. 11(3), 31 (2014)

    Article  Google Scholar 

  52. Wichlund, K., Sørdalen, O.J., Egeland, O.: Control properties of underactuated vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp 2009–2014 (1995)

  53. Yuh, J.: A neural net controller for underwater robotic vehicles. IEEE J. Ocean. Eng. 15(3), 161–166 (1990)

    Article  Google Scholar 

  54. Yuh, J.: Learning control for underwater robotic vehicles. IEEE Control 14(2), 39–46 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Zribi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank the Kuwait Foundation for the Advancement of Science (KFAS) for the financial support of the project KFAS 2013-5505-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmokadem, T., Zribi, M. & Youcef-Toumi, K. Control for Dynamic Positioning and Way-point Tracking of Underactuated Autonomous Underwater Vehicles Using Sliding Mode Control. J Intell Robot Syst 95, 1113–1132 (2019). https://doi.org/10.1007/s10846-018-0830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0830-8

Keywords

Navigation