Skip to main content
Log in

Development of Novel Motion Planning and Controls for a Series of Physically Connected Robots in Dynamic Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The motion planning and control of physically connected robots, e.g., docked mobile robots (DMR), is a challenging problem due to robots’ underactuated and nonlinear dynamics as well as their physical constraints. The majority of the motion planning approaches developed for DMR are not robust to robots’ mass difference and are only applicable to static environments. This paper proposes a novel motion planning methodology for a DMR, consisting of a nonholonomic circular-shape leader and N holonomic passive-wheels active-joints circular-shape followers, through developing: (i) a trajectory planner to determine the motion of docked followers for tracking a desired path, (ii) a robust motion controller to navigate DMR through the planned trajectory, and (iii) a collision avoidance strategy to provide a collision-free transit for followers in dynamic environments. We propose two novel approaches for collision avoidance: a reactive approach which is a decentralized method that utilizes robots’ on-board measurement sensors, and a cooperative approach which is a centralized approach that uses environment information (e.g. obstacle locations) to prevent imminent collisions. In the reactive approach, the collision avoidance strategy is comprised of two control laws, one for obstacle avoidance and the other for satisfying joint constraints. In the cooperative approach, the collision avoidance strategy replans a collision-free trajectory for docked followers, and then deploys our trajectory planner and motion controller to navigate the DMR through the trajectory. The performance of the proposed reactive and cooperative approaches were shown and compared through simulations as well as implementation in a virtual robot experimentation platform (V-REP). The results showed that while the reactive approach is more efficient in terms of computation time and energy consumption, the cooperative approach requires less lateral deviation for avoiding the obstacles which is beneficial for operation in confined spaces. We finally compared our motion planning methodology with other existing methods in the literature. This comparison proved that our method is applicable to complex paths in dynamic environments, scalable with the number of followers, robust to various robots’ masses, and more computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altafini, C.: Path following with reduced off-tracking for multibody wheeled vehicles. IEEE Trans. Control Syst. Technol. 11(4), 598–605 (2003)

    Article  Google Scholar 

  2. Barraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)

    Article  MathSciNet  Google Scholar 

  3. Blanchini, F., Miani, S.: Set-theoretic Methods in Control. Springer, Berlin (2008)

  4. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carabin, G., Wehrle, E., Vidoni, R.: A review on energy-saving optimization methods for robotic and automatic systems. Robotics 6(4), 39 (2017)

    Article  Google Scholar 

  6. Clemente, E., Meza-Sánchez, M., Bugarin, E., Aguilar-Bustos, A.Y.: Adaptive behaviors in autonomous navigation with collision avoidance and bounded velocity of an omnidirectional mobile robot. Journal of Intelligent & Robotic Systems (2017)

  7. Couture-Beil, A., Vaughan, R.T.: Adaptive mobile charging stations for multi-robot systems. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 1363–1368 (2009)

  8. Divelbiss, A.W., Wen, J.T.: A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Trans. Robot. Autom. 13(3), 443–451 (1997)

    Article  Google Scholar 

  9. Echegoyen, Z., Villaverde, I., Moreno, R., Graña, M., d’Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. Robot. Auton. Syst. 58(12), 1292–1305 (2010)

    Article  Google Scholar 

  10. Funke, J., Brown, M., Erlien, S.M., Gerdes, J.C.: Collision avoidance and stabilization for autonomous vehicles in emergency scenarios. IEEE Trans Control Systems Technology (2016)

  11. González-Sierra, J., Aranda-Bricaire, E., Hernández-Mendoza, D., Santiaguillo-Salinas, J.: Emulation of n-trailer systems through differentially driven multi-agent systems: Continuous-and discrete-time approaches. J. Intell. Robot. Syst. 75(1), 129 (2014)

    Article  Google Scholar 

  12. Jia, Y., Cebon, D.: Field testing of a cyclist collision avoidance system for heavy goods vehicles. IEEE Trans. Veh. Technol. 65(6), 4359–4367 (2016)

    Article  Google Scholar 

  13. Kayacan, E., Ramon, H., Saeys, W.: Robust trajectory tracking error model-based predictive control for unmanned ground vehicles. IEEE/ASME Trans. Mechatron. 21(2), 806–814 (2016)

    Article  Google Scholar 

  14. Kim, Y., Minor, M.A.: Distributed kinematic motion control of multi-robot coordination subject to physical constraints. Int. J. Robot. Res. 29(1), 92–109 (2010)

    Article  Google Scholar 

  15. Lashkari, N., Biglarbegian, M., Yang, S.X.: Optimal design of formation tracking control for a tractor-trailer robotic system with omni-directional wheels. In: 2016 IEEE 19th Int. Conf. Intelligent Transportation Systems (ITSC), pp. 1826–1831 (2016)

  16. Lashkari, N., Biglarbegian, M., Yang, S.X.: Development of a new robust controller with velocity estimator for docked mobile robots: theory and experiments. IEEE/ASME Trans. Mechatron. 22(3), 1287–1298 (2017)

    Article  Google Scholar 

  17. Laumond, J.P.: Controllability of a multibody mobile robot. IEEE Trans. Robot. Autom. 9(6), 755–763 (1993). https://doi.org/10.1109/70.265919

    Article  Google Scholar 

  18. Li, B., Wang, K., Shao, Z.: Time-optimal trajectory planning for tractor-trailer vehicles via simultaneous dynamic optimization. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 3844–3849 (2015)

  19. Li, H., Wang, T., Wei, H., Meng, C.: Response strategy to environmental cues for modular robots with self-assembly from swarm to articulated robots. J. Intell. Robot. Syst. 81(3-4), 359 (2016)

    Article  Google Scholar 

  20. Manesis, S., Koussoulas, N.T., Davrazos, G.: On the suppression of off-tracking in multi-articulated vehicles through a movable junction technique. J. Intell. Robot. Syst. 37(4), 399–414 (2003)

    Article  Google Scholar 

  21. Michałek, M.M., Kiełczewski, M.: The concept of passive control assistance for docking maneuvers with n-trailer vehicles. IEEE/ASME Trans. Mechatron. 20(5), 2075–2084 (2015). https://doi.org/10.1109/TMECH.2014.2362354

    Article  Google Scholar 

  22. Michałek, M.M.: Lining-up control strategies for n-trailer vehicles. J. Intell. Robot. Syst. 75(1), 29–52 (2014)

    Article  Google Scholar 

  23. Michałek, M.M., Kiełczewski, M., Jedwabny, T.: Cascaded vfo control for non-standard n-trailer robots. J. Intell. Robot. Syst. 77(3-4), 415–432 (2015)

    Article  Google Scholar 

  24. Nayl, T., Nikolakopoulos, G., Gustafsson, T.: Effect of kinematic parameters on mpc based on-line motion planning for an articulated vehicle. Robot. Auton. Syst. 70, 16–24 (2015)

    Article  Google Scholar 

  25. Norouzi, M., Miro, J.V., Dissanayake, G.: Planning stable and efficient paths for reconfigurable robots on uneven terrain. J. Intell. Robot. Syst. 87(2), 291–312 (2017). https://doi.org/10.1007/s10846-017-0495-8

    Article  Google Scholar 

  26. Orosco-Guerrero, R., Aranda-Bricaire, E., Velasco-Villa, M.: Global path-tracking for a multi-steered general n-trailer. IFAC Proceedings Volumes 35(1), 477–482 (2002). 15th IFAC World Congress

    Article  Google Scholar 

  27. Pazderski, D.: Waypoint following for differentially driven wheeled robots with limited velocity perturbations. J. Intell. Robot. Syst. 85(3-4), 553–575 (2017)

    Article  Google Scholar 

  28. Pazderski, D., Wakowicz, D.K., Kozowski, K.: Motion control of vehicles with trailers using transverse function approach. J. Intell. Robot. Syst. 77(3-4), 457 (2015)

    Article  Google Scholar 

  29. Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: 2005 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2210–2215 (2005)

  30. Rimmer, A.J., Cebon, D.: Planning collision-free trajectories for reversing multiply-articulated vehicles. IEEE Trans. Intell. Transp. Syst. 17(7), 1998–2007 (2016)

    Article  Google Scholar 

  31. Rohmer, E., Singh, S.P., Freese, M.: V-Rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326. IEEE (2013)

  32. Schaub, A., Baumgartner, D., Burschka, D.: Reactive obstacle avoidance for highly maneuverable vehicles based on a two-stage optical flow clustering. IEEE Trans Intelligent Transportation Systems (2016)

  33. Sekhavat, S., Laumond, J.P.: Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems. IEEE Trans. Robot. Autom. 14(5), 671–680 (1998)

    Article  Google Scholar 

  34. Tanaka, M., Matsuno, F.: Control of snake robots with switching constraints: trajectory tracking with moving obstacle. Adv. Robot. 28(6), 415–429 (2014)

    Article  Google Scholar 

  35. Tanaka, M., Tanaka, K.: Shape control of a snake robot with joint limit and self-collision avoidance. IEEE Trans Control Systems Technology (2016)

  36. Tanaka, M., Tanaka, K., Matsuno, F.: Approximate path-tracking control of snake robot joints with switching constraints. IEEE/ASME Trans. Mechatron. 20(4), 1633–1641 (2015)

    Article  Google Scholar 

  37. Yuan, J.: Hierarchical motion planning for multi-steering tractor-trailer mobile robots with on-axle hitching. IEEE/ASME Trans Mechatronics (2017). https://doi.org/10.1109/TMECH.2017.2695651

  38. Yuan, J., Huang, Y., Kang, Y., Liu, Z.: A strategy of path following control for multi-steering tractor-trailer mobile robot. In: 2004 IEEE Int. Conf. Robotics and Biomimetics, pp. 163–168 (2004)

  39. Yuan, J., Sun, F., Huang, Y.: Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching. IEEE Trans. Ind. Electron. 62(12), 7665–7677 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC), funding reference number 98202.

Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro de référence 98202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negin Lashkari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Using the Lagrangian approach, the matrices \(\boldsymbol {M}\), \(\boldsymbol {V}\), \(\boldsymbol {B}\), \(\boldsymbol {J}\) and \(\boldsymbol {A}\) in Eq. 2 are given by Eqs. 35 and 36:

$$ \boldsymbol{V}= \left[\begin{array}{ccccccccc} 0 & 0 & h_{0}\text{c}_{0}\dot{\theta}_{0} {M_{1}^{N}} & h_{1}\text{c}_{1}\dot{\theta}_{1} (m_{1}+ 2{M_{2}^{N}}) & {\ldots} & h_{k}\text{c}_{k}\dot{\theta}_{k} \left( m_{k}+ 2M_{k + 1}^{N}\right) & {\ldots} & h_{N-1}\text{c}_{N-1}\dot{\theta}_{N-1} (m_{N-1}+ 2 m_{N}) & h_{N}\text{c}_{N}\dot{\theta}_{N} m_{N}\\ 0 & 0 & h_{0}\text{s}_{0}\dot{\theta}_{0} {M_{1}^{N}} & h_{1}\text{s}_{1}\dot{\theta}_{1} (m_{1}+ 2{M_{2}^{N}}) & {\ldots} & h_{k}\text{s}_{k}\dot{\theta}_{k} \left( m_{k}+ 2M_{k + 1}^{N}\right) & {\ldots} & h_{N-1}\text{s}_{N-1}\dot{\theta}_{N-1} (m_{N-1}+ 2 m_{N}) & h_{N}\text{s}_{N}\dot{\theta}_{N} m_{N}\\ 0 & 0 & 0 & 0 & {\ldots} & 0 & {\ldots} & 0 & 0\\ \colon & \colon & \colon & \colon & {\ddots} & \colon & \colon & \colon & \colon\\ 0 & 0 & h_{0}h_{l}\text{s}_{0l}\dot{\theta}_{0} (m_{l}+ 2 M_{1}^{l-1}) & h_{1}h_{l}\text{s}_{1l}\dot{\theta}_{1} (m_{l}+m_{1}+ 2 M_{2}^{l-1}) & {\ldots} & h_{k}h_{l}\text{s}_{kl}\dot{\theta}_{k} \left( m_{l}+m_{k}+ 2M_{k + 1}^{l-1}\right) & {\ldots} & 0 & 0\\ \colon & \colon & \colon & \colon & {\ddots} & \colon & \ddots & \colon & \colon\\ 0 & 0 & h_{0}h_{N-1}\text{s}_{0(N-1)}\dot{\theta}_{0} \left( m_{N-1}+ 2 M_{1}^{N-2} \right) & h_{1}h_{N-1}\text{s}_{1(N-1)}\dot{\theta}_{1} \left( m_{1}+m_{N-1}+ 2M_{2}^{N-2}\right) & {\ldots} & h_{k} h_{N-1}\text{s}_{k(N-1)}\dot{\theta}_{k} \left( m_{k}+m_{N-1}+ 2M_{k + 1}^{N-2}\right) & {\ldots} & 0 & 0\\ 0 & 0 & h_{0}h_{N}\text{s}_{0N}\dot{\theta}_{0} M_{1}^{N-1} & h_{1}h_{N}\text{s}_{1N}\dot{\theta}_{1} (m_{1}+ 2{M_{2}^{N}}) & {\ldots} & h_{k}h_{N}\text{s}_{kN}\dot{\theta}_{k} \left( m_{k}+ 2M_{k + 1}^{N}\right) & {\ldots} & h_{N-1}h_{N} \text{s}_{(N-1)N}\dot{\theta}_{N-1} (m_{N-1}+ 2m_{N}) & 0 \end{array}\right] $$
(35)
$$\begin{array}{@{}rcl@{}} \boldsymbol{M} &=& \setlength{\arraycolsep}{\arraycolsep} \left[\begin{array}{ccccccc} a_{11} & 0 & a_{13} & {\ldots} & a_{1(k + 3)} & {\ldots} & a_{1(N + 3)}\\ 0 & a_{22} & a_{23} & {\ldots} & a_{2(k + 3)} & {\ldots} & a_{2(N + 3)}\\ a_{31} & a_{32} & a_{33} & {\ldots} & 0 & {\ldots} & 0 \\ \colon & \colon & \colon & {\ddots} & \colon & \colon & \colon \\ a_{(l + 3)1} & a_{(l + 3)2} & a_{(l + 3)3} & {\ldots} & a_{(l + 3)(k + 3)} & {\ldots} & 0 \\ \colon & \colon & \colon & {\ddots} & \colon & \colon & \colon \\ a_{(N + 3)1} & a_{(N + 3)2} & a_{(N + 3)3} & {\ldots} & a_{(N + 3)(k + 3)} & {\ldots} & a_{(N + 3)(N + 3)} \end{array}\right] \\ \boldsymbol{B}&=&\frac{1}{R_{w}} \left[\begin{array}{lll} \text{c}_{0}&\text{c}_{0}& {0}_{3\times N}\\ \text{s}_{0}&\text{s}_{0}&\\ b_{0}&-b_{0}&\\ {0}_{N\times 2} & R_{w} \mathbb{I}_{N\times N} \end{array}\right],\\ \boldsymbol{J}&=& {\displaystyle \left[\begin{array}{cc} c_{0}& \\ s_{0}& {0}_{2\times (N + 1)} \\ {0}_{(N + 1)\times 1} & \mathbb{I}_{(N + 1)\times (N + 1)} \end{array}\right]},\\ \boldsymbol{A}&=& \left[\begin{array}{lllll} \text{s}_{0}&-\text{c}_{0}& 0 & \ldots&0 \end{array}\right] \end{array} $$
(36)

in which

$$\begin{array}{@{}rcl@{}} &&a_{11} = \sum{_{i = 0}^{N}}m_{i}, \qquad\qquad\qquad\qquad\qquad~ a_{13}= h_{0} s_{0} {M_{1}^{N}} \\ &&a_{22} = \sum{_{i = 0}^{N}}m_{i}, \qquad\qquad\qquad\qquad\qquad~ a_{23}= -h_{0} c_{0} {M_{1}^{N}}, \\ &&a_{1(k + 3)}= h_{k} s_{k} \left( m_{k}+ 2M_{k + 1}^{N}\right), \qquad\quad a_{1(N + 3)}= h_{N} s_{N} m_{N} , \\ &&a_{2(k + 3)}= -h_{k} c_{k} \left( m_{k}+ 2M_{k + 1}^{N}\right), \quad\quad a_{2(N + 3)}= -h_{N} c_{N} m_{N},\\ &&a_{(l + 3)1} = -h_{l} s_{l} \left( m_{l}+ 2M_{0}^{l-1}\right), \qquad\quad a_{31} = -h_{0} m_{0} s_{0}, \\ &&a_{(l + 3)2} = h_{l} c_{l} \left( m_{l}+ 2M_{0}^{l-1}\right), \qquad~~\quad a_{32} = h_{0} m_{0} c_{0},\\ &&a_{(l + 3)3}= -h_{l} h_{0} c_{0l} \left( m_{l}+ 2M_{1}^{l-1}\right), ~~\quad a_{33}= I_{0},\\ &&a_{(N + 3)1}= -h_{N} s_{N} M_{0}^{N-1}, \qquad\qquad~~\quad a_{(N + 3)2}= h_{N} c_{N} M_{0}^{N-1},\\ &&a_{(N + 3)3}= -h_{N} h_{0} c_{0N}M_{1}^{N-1}, \qquad\qquad a_{(N + 3)(N + 3)}= I_{N},\\ &&a_{(l + 3)(k + 3)}= -h_{l} h_{k} c_{kl} \left( m_{l}+m_{k}+ 2M_{k + 1}^{l-1}\right), \\ &&a_{(N + 3)(k + 3)}= -h_{N} h_{k} c_{kN} \left( m_{k}+M_{k + 1}^{N}\right),\\ \end{array} $$

and \(\mathbb {I}\) is the identity matrix, \(\text {c}_{0}= \cos \theta _{0}\), \( \text {s}_{0}= \sin \theta _{0}\), \(\text {c}_{lk}= \cos (\theta _{l}-\theta _{k})\), \( \text {s}_{lk}= \sin (\theta _{l}-\theta _{k})\), \(\text {c}_{l}= \cos \theta _{l}\), \( \text {s}_{l}= \sin \theta _{l}\) and \({M_{l}^{k}}={\sum }_{i=l}^{k} m_{i}\) for l,k = 0,…,N. As shown in Fig. 1, \(b_{0}\) and \(R_{w}\) are the radius of leader and of its driving wheels, respectively. Also, \(m_{i}\) and \(I_{i}\) are respectively the mass and inertia of the i th robot and its docking links for \(i = 0,\ldots ,N\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkari, N., Biglarbegian, M. & Yang, S.X. Development of Novel Motion Planning and Controls for a Series of Physically Connected Robots in Dynamic Environments. J Intell Robot Syst 95, 291–310 (2019). https://doi.org/10.1007/s10846-018-0900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0900-y

Keywords

Navigation