Skip to main content
Log in

Formation Specification for Control of Active Agents Using Artificial Potential Fields

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The work presented in this paper presents a general method for formation shape specification and proves convergence for a class of parametrically defined formations with closed form, nearest-point solutions. In addition to a more general specification of formation shape, the method results in a system that is robust in the presence of a variable number of agents. Each agent observes the positions of its neighbors and independently constructs a formation curve about the center of its neighborhood. The attractive point on this formation curve is found by employing a local minimization with respect to the observed center of mass of an agent’s neighborhood rather than a fixed global field. Given a common objective or goal state, this approach results in a general method to drive a time varying number of agents into a desired geometric configuration without specific individual locational or structural pre-assignment. The application of LaSalle’s invariance principal to the system’s Hamiltonian shows stability and convergence of the flock to the desired configuration. Simulation results verify convergence and robustness to instantaneous changes in the number of agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986). http://ijr.sagepub.com/content/5/1/90.full.pdf

    Article  Google Scholar 

  2. Ge, S., Goh, X., Xi, L.: Formation tracking control of multiagents in constrained space. IEEE Trans. Control Syst. Technol. 24(3), 2137–2151 (2016)

    Google Scholar 

  3. Liu, X., Ge, S., Goh, C.: Formation potential field for trajectory tracking control of multi-agents in constrained space. Int. J. Control 90(10), 992–1003 (2017). https://doi.org/10.1080/00207179.2016.1237044

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, S., Zheng, Y., Li, K., Gao, F., Zhang, H.: Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities. IEEE Intell. Transp. Syst. Mag. 9(3), 46–58 (2017)

    Article  Google Scholar 

  5. Gerdes, J., Rossetter, E.: A unified approach to driver assistance systems based on artificial potential fields. J. Dyn. Syst. Meas. Control ASME 123(3), 431–438 (2001)

    Article  Google Scholar 

  6. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  7. Nair, R., Behera, L., Kum, ar, V., Jamshidi, M.: Multisatellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control. IEEE Syst. J. 9(2), 508–518 (2015)

    Article  Google Scholar 

  8. Vidal, R., Rashid, S., Sharp, C., Shakernia, O., Kim, J., Sastry, S.: Pursuit-evasion games with unmanned ground and aerial vehicles. In: IEEE Proceedings on Robotics and Automation, vol. 3. IEEE (2001)

  9. Kothari, M., Manathara, J., Postlethwaite, I.: A cooperative pursuit-evasion game for non-holonomic systems. IFAC Proc. 47(3), 1977–1984 (2014)

    Article  Google Scholar 

  10. Davidsson, P., Henesey, L., Ramstedt, L., Tornquist, J., Ernstedt, F.: An analysis of agent-based approaches to transport logistics. Transportation Res. Part C: Emerg. Technol. 13(4), 255–271 (2005)

    Article  MATH  Google Scholar 

  11. Oh, K., Park, M., Ahn, H.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Scharf, D., Hadaegh, F., Ploen, S.: A survey of spacecraft formation flying guidance and control Part II: control. In: Proceedings of the 2004 American control conference, vol. 4, pp 2976–2985 (2004)

  13. Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Automatic Control 51(3), 401–420 (2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1605401&atag=1

    Article  MathSciNet  MATH  Google Scholar 

  15. Howard, A., Matarić, M., Sukhatme, G.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. Distributed Autonomous Robotic Systems 5, Springer Japan, Chapter 8, pp. 299–308 (2002)

  16. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automatic Control 49(9), 1465–1476 (2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1333200

    Article  MathSciNet  MATH  Google Scholar 

  17. Fax, J.: Optimal and cooperative control of vehicle formations. Ph.D. dissertation, California Institute of Technology, Pasadena (2002)

    Google Scholar 

  18. Olfati-Saber, R., Murray, R.: Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 2, pp. 2022–2028 (2003)

  19. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4118472

    Article  MATH  Google Scholar 

  20. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. ACM Siggraph Comput. Graph. 21 (4), 25–34 (1987). http://dl.acm.org/citation.cfm?id=37406

    Article  Google Scholar 

  21. Punzo, G., Bennet, D. J., Macdonald, M.: Swarm shape manipulation through connection control, Presented at 11th Conference Towards Autonomous Robotic Systems. http://strathprints.strath.ac.uk/25835/ (2010)

  22. Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kan, Z., Dani, A., Shea, J., Dixon, W.: Network connectivity preserving formation stabilization and obstacle avoidance via a decentralized controller. IEEE Trans. Autom. Control 57(7), 1827–1832 (2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6097027

    Article  MathSciNet  MATH  Google Scholar 

  24. Kan, Z., Shea, J., Dixon, W.: Navigation function based decentralized control of a multi-agent system with network connectivity constraints. arXiv:1402.5951 (2014)

  25. Tanner, H.G., Boddu, A.: Multiagent navigation functions revisited. IEEE Trans. Autom. Control 28(6), 1346–1359 (2012)

    Google Scholar 

  26. Porfiri, M., Roberson, D., Japproach, D.: Automatica 43(8), 1318–1328 (2007)

    Article  MathSciNet  Google Scholar 

  27. Kan, Z., Shea, J., Dixon, W.: Balanced containment control and cooperative timing of a multi-agent system. In: Proceedings of the American Control Conference, Portland OR (2014)

  28. Li, Z., Ren, W., Liu, X., Fu, M.: Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control 23(5), 534–547 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control. Eng. Pract. 46, 26–36 (2016)

    Article  Google Scholar 

  30. Dong, X., Hu, G.: Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica 73, 47–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, Z., Mou, S., Anderson, B., Cao, M.: Exponential stability for formation control systems with generalized controllers: a unified approach. Syst. Control Lett. 93, 50–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, Z., Mou, S., Anderson, B, Yu, C.: Conservation and decay laws in distributed coordination control systems. Automatica 87, 1–7 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z., Mou, S., Anderson, B, Cao, M.: Exponential stability for formation control systems with generalized controllers: a unified approach. Syst. Control Lett. 93(1), 50–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, J., Chen, H.: A decentralized, autonomous control architecture for large-scale spacecraft swarm using artificial potential field and bifurcation dynamics. In: 2018 AIAA Guidance, Navigation, and Control Conference (2018)

  35. Chen, H., Sun, J., Li, K., Wang, M.: Autonomous spacecraft swarm formation planning using artificial field based on nonlinear bifurcation dynamics. In: AIAA Guidance, Navigation, and Control Conference, 17 pages (2017)

  36. Fedele, G., D’Alfonso, L.: A model for swarm formation with reference tracking. In: 2017 IEEE 56th Annual Conference Decision and Control (CDC). IEEE (2017)

  37. Kim, D., Wang, H., Shin, S.: Decentralized control of autonomous swarm systems using artificial potential functions: analytical design guidelines. J. Intell. Robot. Syst. 45 (4), 369–394 (2006)

    Article  Google Scholar 

  38. Bennet, D., McInnes, C.: Distributed control of multi-robot systems using bifurcating potential fields. Robot. Auton. Syst. 58(3), 256–264 (2010). http://www.sciencedirect.com/science/article/pii/S092188900900195X

    Article  Google Scholar 

  39. Deghat, M., Anderson, B., Lin, Z.: Combined flocking and distance-based shape control of multi-agent formations, IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2015.2480217 (2016)

  40. Zelazo, D., Franchi, A., Bulthoff, H., Robuffo, G.: Decentralized rigidity maintenance control with range measurements for multi-robot systems. Int. J. Robot. Res. 34(1), 105–128 (2015)

    Article  Google Scholar 

  41. Dunbar, W., Murray, R.: Receding horizon control of multi-vehicle formations: A distributed implementation. In: Proceedings of the IEEE Conference on Decision and Control, vol. 2, pp. 195–2002 (2004)

  42. Paul, T., Krogstad, T., Gravdahl, J.: Modelling of UAV formation flight using 3D potential field. Simul. Model. Pract. Theory 16(9), 1453–1462 (2008)

    Article  Google Scholar 

  43. Anderson, B., Lin, Z., Deghat, M.: Combining distance-based formation shape control with formation translation. Developments in Control Theory Towards Glocal Control 1, 121–130 (2012)

    Article  MathSciNet  Google Scholar 

  44. Yang, Q., Cao, M., de Marina Garcia, H., Fang, H., Chen, J.: Distributed formation tracking using local coordinate systems. Syst. Control Lett. 111, 70–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun, Z., Park, M., Anderson, B., Ahn, H.: Distributed stabilization control of rigid formations with prescribed orientation. Automatica 78, 250–257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Do, K., Lau, M.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)

    Article  MATH  Google Scholar 

  47. Wang, G., Wang, C., Du, Q., Li, L., Dong, W.: Distributed cooperative control of multiple nonholonomic mobile robots. J. Intell. Robot. Syst. 83(3-4), 525–541 (2016)

    Article  Google Scholar 

  48. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  49. Yu, C., Hendrix, J., Fidan, B., Anderson, B., Blondel, B.: Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence. Automatica 43(3), 387–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mou, S., Bellabas, M., Morse, A., Sun, Z., Anderson, B.: Undirected rigid formations are problematic. IEEE Trans. Autom. Control 61(10), 2821–2836 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kan, Z., Dani, A., Shea, J., Dixon, W.: Network connectivity preserving formation stabilization and obstacle avoidance via a decentralized controller. IEEE Trans. Autom. Control 57(7), 1827–1832 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Guo, M., Zavlanos, M.M., Dimarogonas, D.: Controlling the relative agent motion in multi-agent formation stabilization. IEEE Trans. Autom. Control 59(3), 820–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Trinh, M., Oh, M., Jeong, K., Ahn, H.: Bearing-only control of leader first follower formations. IFAC-PapersOnLine 49(4), 7–12 (2016)

    Article  MathSciNet  Google Scholar 

  54. Zhao, S., Lin, F., Peng, K., Chen, B., Lee, T.: Distributed control of angle-constrained cyclic formations using bearing-only measurements. Syst. Control Lett. 63(1), 12–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kirk, D.: Optimal control theory: An introduction. Dover Publications Inc., New York (2012)

    Google Scholar 

  56. Harder, S.: Distributed formation control of autonomous agents using artificial potential field functions, Master’s dissertation. University of Colorado, Colorado Springs (2015)

    Google Scholar 

  57. Pierre, D.: Optimization theory with applications. Dover Publications Inc., New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Harder.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harder, S.A., Lauderbaugh, L.K. Formation Specification for Control of Active Agents Using Artificial Potential Fields. J Intell Robot Syst 95, 279–290 (2019). https://doi.org/10.1007/s10846-018-0912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0912-7

Keywords

Navigation