Skip to main content
Log in

Design and Modelling of Flex-Rigid Soft Robot for Flipping Locomotion

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents design and modelling of a flex-rigid soft robot for flipping locomotion. The proposed robot is made into a strip shape and consists of three rigid limbs connected by two active flexible hinges. Its flipping locomotion is achieved by active folding and developing of the hinges. To validate its locomotion ability, we build a state-space model to simulate its dynamics, which is compared with the experimental data. The results show that the proposed flex-rigid robot can perform flipping locomotion with average velocity of 59mm/s in simulation and 60mm/s in experiment, and the model can predict its movement effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angewandte Chemie - International Edition 50(8), 1890–1895 (2011)

    Article  Google Scholar 

  2. Sanan, S.: Soft inflatable robots for safe physical human interaction. Carnegie Mellon University 3575511, 240 (2013)

    Google Scholar 

  3. Rodrigue, H., Wang, W., Han, M.-W., Kim, T.J.Y., Ahn, S.-H.: An overview of shape memory alloy-coupled actuators and robots. Soft Robot. 4(1), 3–15 (2017)

    Article  Google Scholar 

  4. Shian, S., Bertoldi, K., Clarke, D.: Dielectric elastomer based grippers for soft robotics. Adv. Mater. (Deerfield Beach Fla.) 27, 6814–6819 (2015)

    Article  Google Scholar 

  5. Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A., Iida, F.: Soft manipulators and grippers: a review. Front. Robot. AI 3, 69 (2016)

    Article  Google Scholar 

  6. Katzschmann, R.K., DelPreto, J., MacCurdy, R., Daniela, R.: Exploration of underwater life with an acoustically controlled soft robotic fish, vol. 3 (2018)

  7. Su, K.Y., Gul, J.Z., Choi, H.K.: A biomimetic jumping locomotion of functionally graded frog soft robot. In: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017, pp. 675–676 (2017)

  8. Lin, H.T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration and Biomimetics 6(2), 026007 (2011)

    Article  Google Scholar 

  9. Nemiroski, A., Shevchenko, Y.Y., Stokes, A.A., Unal, B., Ainla, A., Albert, S., Compton, G., MacDonald, E., Schwab, Y., Zellhofer, C., Whitesides, G.M.: Arthrobots. Soft Robot. soro.2016.0043, 183–190 (2017)

    Article  Google Scholar 

  10. Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M.: A resilient, untethered soft robot. Soft Robot. 1(3), 213–223 (2014)

    Article  Google Scholar 

  11. Steltz, E., Mozeika, A., Rodenberg, N., Brown, E., Jaeger, H.M.: JSEL: Jamming skin enabled locomotion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 5672–5677 (2009)

  12. Fei, Y., Xu, H.: Modeling and motion control of a soft robot. IEEE Trans. Ind. Electron. 64(2), 1737–1742 (2017)

    Article  Google Scholar 

  13. Loepfe, M., Schumacher, C.M., Lustenberger, U.B., Stark, W.J.: An untethered, jumping Roly-Poly soft robot driven by combustion. Soft Robot. 2(1), 33–41 (2015)

    Article  Google Scholar 

  14. Nishikawa, S., Arai, Y., Niiyama, R., Kuniyoshi, Y.: Coordinated Use of Structure-Integrated Bistable Actuation Modules for Agile Locomotion. IEEE Robot. Autom. Lett. 3(2), 1018–1024 (2018)

    Article  Google Scholar 

  15. Alexander, R.M.N.: Principles of animal locomotion. Princeton University Press, Princeton (2003)

    Book  Google Scholar 

  16. Tolley, M.T., Shepherd, R.F., Karpelson, M., Bartlett, N.W., Galloway, K.C., Wehner, M., Nunes, R., Whitesides, G.M., Wood, R.J.: An untethered jumping soft robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 561–566 (2014)

  17. Masuda, Y., Ishikawa, M.: Development of a deformation-driven rolling robot with a soft outer shell. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1651–1656 (2017)

  18. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)

    Article  Google Scholar 

  19. Luo, M., Agheli, M., Onal, C.D.: Theoretical modeling and experimental analysis of a Pressure-Operated soft robotic snake. Soft Robot. 1(2), 136–146 (2014)

    Article  Google Scholar 

  20. Onal, C.D., Rus, D.: A modular approach to soft robots. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1038–1045 (2012)

  21. Wikipedia contributors. Vertebrate — {Wikipedia}{,} The Free Encyclopedia (2018)

  22. Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robot. Auton. Syst. 99, 63–74 (2018)

    Article  Google Scholar 

  23. Wang, W., Ahn, S.-H.: Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot. 4(4), 379–389 (2017)

    Article  Google Scholar 

  24. Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33(03), 173–181 (2008)

    Article  Google Scholar 

  25. Andrikopoulos, G., Nikolakopoulos, G., Stamatis, M.: A survey on applications of pneumatic artificial muscles. In: 2011 19th Mediterranean Conference on Control And Automation, MED 2011, pp. 1439–1446 (2011)

  26. Eiter, T., Mannila, H.: Computing Discrete frėchet Distance. Technical report, Information Systems Department Technical University of Vienna (1994)

  27. Bouc, R: Forced vibration of mechanical systems with hysteresis. In: Proceedings Con/ Nonlinear Oscillation, Prague, Czechoslovakia (1967)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51475300, 51875335) and Joint fund of the Ministry of Education (No.18GFA-ZZ07-171).

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 51475300, 51875335) and Joint fund of the Ministry of Education (No.18GFA-ZZ07-171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiong Fei.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fei, Y. Design and Modelling of Flex-Rigid Soft Robot for Flipping Locomotion. J Intell Robot Syst 95, 379–388 (2019). https://doi.org/10.1007/s10846-018-0957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0957-7

Keywords

Navigation