Skip to main content
Log in

Online Identification of Aircraft Dynamics in the Presence of Actuator Faults

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a multiple model-based nonlinear identification approach is introduced for a conventional aircraft in the presence of different types of actuator faults. Occurrence of actuator faults can obviously reduce the validity of a predetermined dynamic model of nonlinear systems. In such cases, use of multi-model structures can be an effective choice. However, determining the optimal validity functions of the local models in a multi-model structure is still a challenging problem. This problem becomes even more challenging in case of unpredictable faults, which are not considered in training the local models. In this paper, two effective techniques are proposed for online determination of the validity functions of local models called the Error-based Gaussian validity functions (E-GVF) and the Online Sequential Extreme Learning Machine (OSELM)-based approach. Accordingly, there is no need to employ a separate Fault Detection and Isolation (FDI) block in the proposed identification approach. Also, due to great capabilities of neural networks for modeling complex nonlinear systems, recurrent neural networks are used as the local models of the proposed multi-model structure. The obtained simulation results indicate the capability of the proposed OSELM-based multi-model structure for nonlinear identification of complex dynamic systems in the presence of both predictable and unpredictable actuator faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adeniran, A.A., El Ferik, S.: Modeling and identification of nonlinear systems: a review of the multimodel approach—part 1. IEEE Transactions on Systems Man, and Cybernetics: Systems 47(7), 1149–1159 (2017)

    Article  Google Scholar 

  2. Roudbari, A., Saghafi, F.: Generalization of ANN-based aircraft dynamics identification techniques into the entire flight envelope. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1866–1880 (2016)

    Article  Google Scholar 

  3. Roudbari, A., Saghafi, F.: Modeling and identification of highly maneuverable fighter aircraft dynamics using block-oriented nonlinear models. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231(7), 1293–1311 (2016)

    Article  Google Scholar 

  4. Pérez-Cruz, J.H., Chairez, I., de Jesús Rubio, J., Pacheco, J.: Identification and control of class of non-linear systems with non-symmetric deadzone using recurrent neural networks. IET Control Theory Appl. 8(3), 183–192 (2014)

    Article  MathSciNet  Google Scholar 

  5. Tischler, M.B., Remple, R.K.: Aircraft & Rotorcraft System Identification: Engineering Methods with Flight-Test Examples. AIAA, Blacksburg (2006)

    Google Scholar 

  6. Emami, A., Banazadeh, A.: Control oriented modeling and identification of nonlinear systems. Appl. Mech. Mater. 841, 330–337 (2016)

    Article  Google Scholar 

  7. Huang, J., Ji, G., Zhu, Y., van den Bosch, P.: Identification of multi-model LPV models with two scheduling variables. J. Process. Control. 22(7), 1198–1208 (2012)

    Article  Google Scholar 

  8. Boutalis, Y., Kottas, T., Theodoridis, D., Christodoulou, M.A.: System Identification and Adaptive Control: Theory and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models. Springer, Berlin (2014)

    Book  Google Scholar 

  9. da Costa Lopes, F., Watanabe, E.H., Rolim, L.G.B.: A control-Oriented model of a PEM fuel cell stack based on NARX and NOE neural networks. IEEE Trans. Ind. Electron. 62(8), 5155–5163 (2015)

    Article  Google Scholar 

  10. El Ferik, S., Adeniran, A.A.: Modeling and identification of nonlinear systems: a review of the multimodel approach—part 2. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(7), 1160–1168 (2017)

    Article  Google Scholar 

  11. Emami, S.A., Roudbari, A.: Multi-model ELM Based identification of an aircraft dynamics in the entire flight envelope. IEEE Trans. Aerosp. Electron. Syst. (2018) https://doi.org/10.1109/TAES.2018.2883848

    Article  Google Scholar 

  12. Orjuela, R., Marx, B., Ragot, J., Maquin, D.: Nonlinear system identification using heterogeneous multiple models. Int. J. Appl. Math. Comput. Sci. 23(1), 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hosseini, S., Fatehi, A., Sedigh, A.K., Johansen, T.A.: Automatic model bank selection in multiple model identification of gas turbine dynamics. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 227(5), 482–494 (2013)

    Google Scholar 

  14. Lu, Y., Huang, B.: Robust multiple-model LPV approach to nonlinear process identification using mixture t distributions. J. Process. Control. 24(9), 1472–1488 (2014)

    Article  Google Scholar 

  15. Skoundrianos, E.N., Tzafestas, S.G.: Modelling and FDI of dynamic discrete time systems using a MLP with a new sigmoidal activation function. J. Intell. Robot. Syst. 41(1), 19–36 (2004)

    Article  Google Scholar 

  16. Liu, Q., Zhu, D., Yang, S.X.: Unmanned underwater vehicles fault identification and fault-tolerant control method based on fca-cmac neural networks, applied on an actuated vehicle. J. Intell. Robot. Syst. 66(4), 463–475 (2012)

    Article  Google Scholar 

  17. Zhang, J., Liu, Y., Li, X.: Generalized SSPRT for fault identification and estimation of linear dynamic systems based on multiple model algorithm. Journal of Applied Research and Technology 12(3), 409–421 (2014)

    Article  Google Scholar 

  18. Yuan, H., Lu, C., Ma, J., Chen, Z.: Neural network-based fault detection method for aileron actuator. Appl. Math. Model. 39(19), 5803–5815 (2015)

    Article  Google Scholar 

  19. Talebi, H.A., Khorasani, K.: A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems. IEEE Trans. Control Syst. Technol. 21(3), 842–851 (2013)

    Article  Google Scholar 

  20. Han, H.-G., Zhang, L., Hou, Y., Qiao, J.-F.: Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Transactions on Neural Networks and Learning Systems 27(2), 402–415 (2016)

    Article  MathSciNet  Google Scholar 

  21. Patan, K.: Neural network-based model predictive control: fault tolerance and stability. IEEE Trans. Control Syst. Technol. 23(3), 1147–1155 (2015)

    Article  Google Scholar 

  22. Talebi, H.A., Abdollahi, F., Patel, R.V., Khorasani, K.: Neural Network-Based State Estimation of Nonlinear Systems, vol. 395. Springer, New York (2010)

    Book  Google Scholar 

  23. Xiong, W., Chen, L., Liu, F., Xu, B.: Multiple model identification for a high purity distillation column process based on EM algorithm. Math. Probl. Eng. 2014(7), 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Chen, L., Tulsyan, A., Huang, B., Liu, F.: Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm. J. Process. Control. 23(10), 1480–1496 (2013)

    Article  Google Scholar 

  25. Emami, S.A., Banazadeh, A.: Robustness investigation of a ducted-fan aerial vehicle control, using linear, adaptive, and model predictive controllers. International Journal of Advanced Mechatronic Systems 6(2/3), 108 (2015)

    Article  Google Scholar 

  26. Emami, S.A., Rezaeizadeh, A.: Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft. IET Control Theory Appl. 12(15), 2031–2042 (2018)

    Article  MathSciNet  Google Scholar 

  27. Liang, N.-Y., Huang, G.-B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  28. Zhao, J., Wang, Z., Park, D.S.: Online sequential extreme learning machine with forgetting mechanism. Neurocomputing 87, 79–89 (2012)

    Article  Google Scholar 

  29. Soares, S.G., Araújo, R.: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction. Neurocomputing 171, 693–707 (2016)

    Article  Google Scholar 

  30. Bobál, V., Böhm, J., Fessl, J., Machácek, J.: Digital Self-tuning Controllers: Algorithms, Implementation and Applications (Advanced Textbooks in Control and Signal Processing). Springer, Berlin (2005)

    Google Scholar 

  31. Åström , K.J., Björn, W.: Adaptive Control, 2nd edn. Dover Publications, New York (2008)

    MATH  Google Scholar 

  32. Al-Jiboory, A.K., Zhu, G., Swei, S.S.-M., Su, W., Nguyen, N.T.: LPV Modeling of a flexible wing aircraft using modal alignment and adaptive gridding methods. Aerosp. Sci. Technol. 66, 92–102 (2017)

    Article  Google Scholar 

  33. Ansari, A., Bernstein, D.S.: Retrospective cost adaptive control of generic transport model under uncertainty and failure. Journal of Aerospace Information Systems 14(3), 123–174 (2017)

    Article  Google Scholar 

  34. Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant control study. Int. J. Appl. Math. Comput. Sci. 22(1), 225–237 (2012)

    Article  Google Scholar 

  35. Hovakimyan, N., Cao, C., Kharisov, E., Xargay, E., Gregory, I. M.: L1 adaptive control for safety-critical systems. IEEE Control. Syst. 31(5), 54–104 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Banazadeh.

Ethics declarations

Conflict of interests

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, S.A., Banazadeh, A. Online Identification of Aircraft Dynamics in the Presence of Actuator Faults. J Intell Robot Syst 96, 541–553 (2019). https://doi.org/10.1007/s10846-019-00998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-00998-z

Keywords

Navigation