Skip to main content
Log in

Adaptive Visual Regulation of Wheeled Mobile Robots: a Switching Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with the visual regulation problem of wheeled mobile robots (WMRs) in the presence of uncalibrated camera-to-robot parameters and unknown image depth. A two-stage controller is designed by using a switching approach. Specifically, in the first stage, an invariant-manifold-based adaptive controller is presented to bring the lateral error and angular error within an arbitrarily small neighborhood of zero; in the second stage, the longitudinal error is regulated by employing a proportional controller. Utilizing the Lyapunov stability analysis, the exponentially bounded stability of the closed-loop system is proved. Both simulation and experimental results are presented to validate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David, A., Jean, P.: Computer Vision: a Modern Approach. Prentice–Hall Inc., Upper Saddle (2012)

    Google Scholar 

  2. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  3. Yang, C., Wu, H., Li, Z., He, W., Wang, N., Su, C.-Y.: Mind control of a robotic arm with visual fusion technology. IEEE Trans. Ind. Inf. 14(9), 3822–3830 (2018)

    Article  Google Scholar 

  4. He, W., Li, Z., Philip Chen, C.L.: A survey of human-centered intelligent robots: issues and challenges. IEEE/CAA J. Autom. Sinica 4(4), 602–609 (2017)

    Article  Google Scholar 

  5. Chaumette, F., Hutchinson, S.: Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  6. Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  7. Fang, Y., Liu, X., Zhang, X.: Adaptive active visual servoing of nonholonomic mobile robots. IEEE Trans. Ind. Electron. 59(1), 486–497 (2012)

    Article  Google Scholar 

  8. Wang, C., Liang, Z., Liu, Y.: Dynamic feedback robust regulation of nonholonomic mobile robots. In: Proceedings IEEE International Conference on Decision Control, pp. 4384–4389 (2009)

  9. Li, B., Fang, Y., Zhang, X.: Visual servo regulation of wheeled mobile robots with an uncalibrated onboard camera. IEEE/ASME Trans. Mechatron. 21(5), 2330–2342 (2016)

    Article  Google Scholar 

  10. Lópezfranco, M., Sanchez, E., Alanis, A., Lópezfranco, C.: Discrete time neural control of a nonholonomic mobile robot integrating stereo vision feedback. In: Proceedings of the International Joint Conference on Neural Networks, pp. 4–9 (2013)

  11. Vidal, R., Shakernia, Q., Sastry, S.: Following the flock: distributed formation control with omnidirectional vision-based motion segmentation and visual servoing. IEEE Robot. Autom. Mag. 11, 14–20 (2004)

    Article  Google Scholar 

  12. Zhang, X., Fang, Y., Liu, X.: Motion-estimation-based visual servoing of nonholonomic mobile robots. IEEE Trans. Robot. 27(6), 1167–1175 (2011)

    Article  Google Scholar 

  13. Louchene, A., Bouguechal, N.E.: Indoor mobile robot local path planner with trajectory tracking. J. Intell. Robot. Syst. 37(2), 163–175 (2003)

    Article  Google Scholar 

  14. Wang, H., Guo, D., Liang, X., Chen, X., Hu, W., Leang, K.K.: Adaptive vision-based leader-follower formation control of mobile robots. IEEE Trans. Ind. Electron. 64(4), 2893–2902 (2017)

    Article  Google Scholar 

  15. Chen, J., Jia, B., Zhang, K.: Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots. IEEE Trans. Cybern. 47(11) (2017)

  16. Wang, G., Wang, C., Du, Q.: Robust regulation of mobile robots with dynamic based on uncalibrated visual servoing. In: Proceedings of the 11th WCICA, pp. 267–272 (2014)

  17. Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Trans. Robot. 23(1), 87–100 (2007)

    Article  Google Scholar 

  18. De Luca, A., Oriolo, G., Giordano, P.R.: Feature depth observation for image-based visual servoing: theory and experiments. Int. J. Robot. Res. 27(10), 1093–1116 (2008)

    Article  Google Scholar 

  19. Carvalho, E., Silva, M.P., Cardeira, C.: Decentralized formation control of autonomous mobile robots. In: Proceedings, 35th Annual IEEE IECON, pp. 1504–1509 (2009)

  20. Malis, E., Chaumette, F., Boudet, S.: 2 1/2 D visual servoing. IEEE Trans. Robot. Autom. 15(2), 238–250 (1999)

    Article  Google Scholar 

  21. Fang, Y., Dixon, W., Dawson, D., Chawda, P.: Homography-based visual servo regulation of mobile robots. IEEE Trans. Syst. Man Cybern. B: Cybern. 35(5), 1041–1050 (2005)

    Article  Google Scholar 

  22. Li, B., Fang, Y., Hu, G., Zhang, X.: Model-free unified tracking and regulation visual servoing of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(4), 1328–1339 (2016)

    Article  Google Scholar 

  23. Ke, F., Li, Z., Xiao, H., Zhang, X.: Visual servoing of constrained mobile robots based on model predictive control. IEEE Trans. Syst. Man Cybern: Syst. 47(7), 1428–1438 (2017)

    Article  Google Scholar 

  24. Chen, H., Zhang, J., Chen, B., Li, B.: Global practical stabilization for non-holonomic mobile robots with uncalibrated visual parameters by using a switching controller. IMA J. Math. Control 30(4), 543–557 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lu, Q., Yu, L., Zhang, D., Su, C.: An extended immersion and invariance for acceleration-level pseudo-dynamic visual regulation of mobile robots. In: Proceedings of the IEEE Control and Automation Conference, pp. 1180–1185 (2018)

  26. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2883374

  27. Zhang, X., Fang, Y., Li, B., Wang, J.: Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robot parameters. IEEE Trans. Ind. Electron. 64(1), 390–400 (2017)

    Article  Google Scholar 

  28. Zhang, X., Fang, Y., Liu, X.: Adaptive visual servo regulation of mobile robots. Control Theory Appl. 27(9), 1123–1130 (2010)

    Google Scholar 

  29. Lu, Q., Yu, L., Zhang, D., Zhang, X.: Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters. Int. J. Syst. Sci. 49(1), 217–229 (2018)

    Article  MathSciNet  Google Scholar 

  30. Tayebi, A., Rachid, A.: Adaptive controller for non-holonomic mobile robots with matched uncertainties. Adv. Robot. 14(2), 105–118 (2000)

    Article  Google Scholar 

  31. De Wit, C.C., Khennouf, H.: Quasi-continuous stabilizing controllers for nonholonomic systems: Design and robustness consideration. In: Proceedings of 3rd ECC, pp. 2630–2635 (1995)

  32. Reyhanoglu, M.: On the stabilization of a class of nonholonomic systems using invariant manifold technique. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 2125–2126 (1995)

  33. Tayebi, A., Tadjine, M., Rachid, A.: Invariant manifold approach for the stabilization of nonholonomic chained systems: application to mobile robots. Nonlinear Dyn. 24(2), 167–181 (2001)

    Article  MathSciNet  Google Scholar 

  34. Tayebi, A., Tasjine, M., Rachid, A.: Stabilization of nonholonomic systems in chained form: application to a car-like mobile robot. In: Proceedings of the IEEE International Conference on Control Applications, pp. 195–200 (1997)

  35. Yoshimura, S., Watanabe, K., Maeyama, S.: Quasi-continuous exponential stabilization for the underactuated control of a fire truck robot by using an invariant manifold theory. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 692–697 (2013)

  36. Li, S., Ma, G., Wu, W.: Time-varying adaptive stabilization of an uncertain nonholonomic moible robots. Robot 27(1), 10–13 (2005)

    Google Scholar 

  37. Zhang, W., Yang, X., Yu, L., Liu, S.: Sequential fusion estimation for RSS-based mobile robots localization with event-driven WSN. IEEE Trans. Ind. Inf. 12(4), 1519–1528 (2016)

    Article  Google Scholar 

  38. Tsalatsanis, A., Valavanis, K., Tsourveloudis, N.: Mobile robot navigation using sonar and range measurements from uncalibrated cameras. J. Intell. Robot. Syst. 48(2), 253–284 (2007)

    Article  Google Scholar 

  39. Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., Su, C.-Y.: Trajectory tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Trans. SMC: Syst. 46(6), 740–749 (2016)

    Google Scholar 

  40. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  41. Slotine, J., Li, W.: Applied Nonlinear Control. Printice-Hall Inc., Englewood Cliffs (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Li, Z., Yu, L. et al. Adaptive Visual Regulation of Wheeled Mobile Robots: a Switching Approach. J Intell Robot Syst 98, 345–358 (2020). https://doi.org/10.1007/s10846-019-01065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01065-3

Keywords

Navigation