Skip to main content

Advertisement

Log in

Using Ontology as a Strategy for Modeling the Interface Between the Cognitive and Robotic Systems

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work contributes to the social robotics area by defining an architecture, called Cognitive Model Development Environment (CMDE) that models the interaction between cognitive and robotic systems. The communication between these systems is formalized with the definition of an ontology, called OntPercept, that models the perception of the environment using the information captured by the sensors present in the robotic system. The formalization offered by the OntPercept ontology simplifies the development, reproduction and comparison of experiments. The validation of the results required the development of two additional components. The first, called Robot House Simulator (RHS), provides an environment where robot and human can interact socially with increasing levels of cognitive processing. The second component is represented by the cognitive system that models the behavior of the robot with the support of artificial intelligence based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodrich, M.A., Schultz, A.C.: Foundations and trends®;. Human-Comput. Interact. 1(3), 203 (2007). https://doi.org/10.1561/1100000005

    Article  Google Scholar 

  2. Fong, T., Nourbakhsh, I., Dautenhahn, K.: . Robot. Auton. Syst. 42(3-4), 143 (2003). https://doi.org/10.1016/S0921-8890(02)00372-X

    Article  Google Scholar 

  3. Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., Pioggia, G.: Autism research : Official Journal of the International Society for Autism Research, 9. https://doi.org/10.1002/aur.1527 (2015)

  4. Erel, H., Shem Tov, T., Kessler, Y., Zuckerman, O.. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems - CHI EA ’19, pp. 1–6. ACM Press, New York (2019), https://doi.org/10.1145/3290607.3312758

  5. Foster, M: Philos. Trans. R. Soc. B: Biol. Sci., 374(1771). https://doi.org/10.1098/rstb.2018.0027 (2019)

  6. Portugal, D., Alvito, P., Christodoulou, E., Samaras, G., Dias, J.: . Int. J. Soc. Robot. 11(2), 317 (2019). https://doi.org/10.1007/s12369-018-0492-5

    Article  Google Scholar 

  7. de Graaf, M., Ben Allouch, S., van Dijk, J.: . Human-Comput. Interact. 34(2), 115 (2019). https://doi.org/10.1080/07370024.2017.1312406

    Article  Google Scholar 

  8. Pachidis, T., Vrochidou, E., Kaburlasos, V., Kostova, S., Bonković, M., Papić, V.: . Mech. Mach. Sci. 67, 689 (2019). https://doi.org/10.1007/978-3-030-00232-9_72

    Article  Google Scholar 

  9. Rodriguez, I., Manfré, A., Vella, F., Infantino, I., Lazkano, E.: . Adv. Intell. Syst. Comput. 855, 209 (2019). https://doi.org/10.1007/978-3-319-99885-5_15

    Article  Google Scholar 

  10. Xue, Y., Ju, Z., Xiang, K., Chen, J., Liu, H.: . IEEE Trans. Cogn. Develop. Syst. 11(2), 162 (2019). https://doi.org/10.1109/TCDS.2018.2800167

    Article  Google Scholar 

  11. Saulnier, P., Sharlin, E., Greenberg, S.. In: Proceedings of the 5th ACM/IEEE International Conference on Human-robot Interaction, HRI ’10, pp. 125–126. IEEE Press, Piscataway (2010)

  12. Trovato, G., Ramos, J., Azevedo, H., Moroni, A., Magossi, S., Simmons, R., Ishii, H., Takanishi, A., Paladyn: . J. Behav. Robot. 8, 1 (2017). https://doi.org/10.1515/pjbr-2017-0001

    Article  Google Scholar 

  13. Robotics, V.O.: A Roadmap for U.S. Robotics: From Internet to Robotics (2013). https://books.google.com.br/books?id=KPhQngEACAAJ

  14. Austin, M.: Google built an entire fake city to test the ai of its driverless cars (2017). https://www.digitaltrends.com/cars/google-fake-city/

  15. DARPA: The DARPA Grand Challenge: Ten Years Later (2014). https://www.darpa.mil/news-events/2014-03-13

  16. DARPA: What is the DARPA Robotics Challenge (DRC)? (2015). https://archive.darpa.mil/roboticschallenge/overview.html

  17. Chrysostomou, D., Barattini, P., Kildal, J., Wang, Y., Fo, J., Dautenhahn, K., Ferland, F., Tapus, A., Virk, G.S.. In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction - HRI ’17, pp. 421–422. ACM. https://doi.org/10.1145/3029798.3029800. http://dl.acm.org/citation.cfm?doid=3029798.3029800 Press, New York (2017)

  18. Evans, J.S.B.T.: . Annu. Rev. Psychol. 59(1), 255 (2008). https://doi.org/10.1146/annurev.psych.59.103006.093629

    Article  Google Scholar 

  19. Belo, R.A.F., Ribeiro, J.P., Azevedo, H.. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR). https://doi.org/10.1109/SBR-LARS-R.2017.8215306, http://ieeexplore.ieee.org/document/8215306/. ISBN: 978-1-5090-3656-1, pp. 1–6. IEEE (2017)

  20. Azevedo, H., Romero, R.A.F.. In: COGNITIVE 2016, The Eighth International Conference on Advanced Cognitive Technologies and Applications. ISBN: 978-1-61208-462-6, pp. 1–3. IARIA, Roma (2016)

  21. Azevedo, H., Belo, J.P.R., Romero, R.A.F.. In: 26th IEEE International Symposium on Robot and Human Interactive Communication - RO-MAN2017. https://doi.org/10.1109/ROMAN.2017.8172433. ISBN: 978-1- 5386-3517-9, pp. 1049–1054. IEEE, Lisbon (2017)

  22. Azevedo, H., Belo, J.P.R., Romero, R.A.F.. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6. IEEE (2017), https://doi.org/10.1109/SBR-LARS-R.2017.8215337

  23. Martinson, E., Brock, D.: . IEEE Trans. Cybern. 43(3), 957 (2013). https://doi.org/10.1109/TSMCB.2012.2219524

    Article  Google Scholar 

  24. Kobayashi, Y., Ikezaki, H. In: Toko, K. (ed.) Biochemical Sensors, Mimicking Gustatory and Olfactory Senses. chap. 1, pp. 5–44. Pan Stanford (2013), https://doi.org/10.1201/b15650-4

  25. Villarreal, B.L., Olague, G., Gordillo, J.: . Neurocomputing 175, 1019 (2016). https://doi.org/10.1016/j.neucom.2015.09.108

    Article  Google Scholar 

  26. Dahiya, R.S., Valle, M., Valle, R.S.M. In: Rocha, J.G., Lanceros-Mendez, S. (eds.) Sensors, Focus on Tactile, Force and Stress Sensors. chap. 15, pp. 289–304. InTech, Rijeka (2008), https://doi.org/10.5772/6627

  27. Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., Santos-Victor, J.: IEEE Trans. Cogn. Develop. Syst., 1–1. https://doi.org/10.1109/TCDS.2016.2594134 (2016)

  28. Kortenkamp, S., Simmons, R., Brugali, D.: Robotic Systems Architectures and Programming in Springer Handbook of Robotics, 2nd edn., pp. 283–306. Springer International Publishing, Berlin (2016). chap. 12

    Book  Google Scholar 

  29. Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J.Y., Pattacini, U., Low, S.C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H.J., Zambelli, M., Mealier, A.L., Damianou, A., Metta, G., Prescott, T.J., Demiris, Y., Dominey, P.F., Verschure, P.F.MJ.: IEEE Trans. Cogn. Develop. Syst., 1–1. https://doi.org/10.1109/TCDS.2017.2754143 (2017)

  30. ACT-R: ACT-R Home (2018). http://act-r.psy.cmu.edu/

  31. Laird, J.E., Congdon, C.B.: The Soar’s User Manual. Internet draft (2015). https://web.eecs.umich.edu/soar/downloads/Documentation/SoarManual.pdf

  32. Baxter, P., Lemaignan, S., Trafton, J.G.. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 579–580. IEEE (2016), https://doi.org/10.1109/HRI.2016.7451865

  33. Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., Santos-Victor, J.: . IEEE Trans. Cogn. Develop. Syst. 10(1), 4 (2018). https://doi.org/10.1109/TCDS.2016.2594134

    Article  Google Scholar 

  34. Bateman, J.: John bateman’s ontology portal (2019) http://www.fb10.uni-bremen.de/anglistik/langpro/webspace/jb/info-pages/ontology/ontology-root.htm

  35. Pease, A.: Suggested upper merged ontology (sumo) (2019) http://www.adampease.org/OP/

  36. BioPortal: Browse the library of ontologies (2019). https://bioportal.bioontology.org/ontologies

  37. Protégé: Welcome to the protege ontology library (2019). https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

  38. Prestes, E., Carbonera, J.L., Fiorini, S.R., Jorge, V.A.M., Abel, M., Madhavan, R., Locoro, A., Goncalves, P., Barreto, M.E., Habib, M., Chibani, A., Gerard, S., Amirat, Y., Schlenoff, C.: . Robot. Auton. Syst. 161, 1193 (2013). https://doi.org/10.1016/j.robot.2013.04.005

    Article  Google Scholar 

  39. Fiorini, S.R., Carbonera, J.L., Gonçalves, P., Jorge, V.A., Rey, V.F., Haidegger, T., Abel, M., Redfield, S.A., Balakirsky, S., Ragavan, V., Li, H., Schlenoff, C., Prestes, E.: . Robot. Comput.-Integr. Manuf. 33, 3 (2015). https://doi.org/10.1016/j.rcim.2014.08.004

    Article  Google Scholar 

  40. RoSta-Team: Rosta main page (2009) https://cordis.europa.eu/project/rcn/80477/factsheet/en

  41. RoboHow-Team: Project overview (2016) http://robohow.eu/project

  42. Web-Ontology-WG: Owl web ontology language guide (2012) https://www.w3.org/TR/owl2-overview/

  43. Jena-Team: Apache jena (2018) http://jena.apache.org/

  44. Stardog-Union: Faq - pellet (2017) https://github.com/stardog-union/pellet/wiki/FAQ https://github.com/stardog-union/pellet/wiki/FAQ

  45. Kappassov, Z., Corrales, J.A., Perdereau, V.: . Robot. Auton. Syst. 74, 195 (2015). https://doi.org/10.1016/j.robot.2015.07.015, http://linkinghub.elsevier.com/retrieve/pii/S0921889015001621

    Article  Google Scholar 

  46. Belter, D., Łabecki, P., Fankhauser, P., Siegwart, R.: International Journal of Applied Mathematics and Computer Science, 26(1). https://doi.org/10.1515/amcs-2016-0006 (2016)

  47. Holman, D., Girouard, A., Benko, H., Vertegaal, R.: . Interact. Comput. 25(2), 133 (2013). https://doi.org/10.1093/iwc/iws018. https://academic.oup.com/iwc/article-lookup/doi/10.1093/iwc/iws018

    Article  Google Scholar 

  48. Yuan, W., Dong, S., Adelson, E.: . Sensors 17(12), 2762 (2017). https://doi.org/10.3390/s17122762

    Article  Google Scholar 

  49. Jie, S., Zhuo, D., Qinpei, L., Wong Chern Yuen, A., Yan, R.: HAI 2014 - Proceedings of the 2nd International Conference on Human-Agent Interaction, pp. 197–200. https://doi.org/10.1145/2658861.2658921 (2014)

  50. Cheng, H., Yang, L., Liu, Z.: . IEEE Trans. Circ. Syst. Video Technol. 26(9), 1659 (2016). https://doi.org/10.1109/TCSVT.2015.2469551

    Article  Google Scholar 

  51. Gu, Q.Y., Ishii, I.: . Int. J. Autom. Comput. 13(4), 305 (2016). https://doi.org/10.1007/s11633-016-1024-0

    Article  Google Scholar 

  52. Neustein, A.: Speech and Automata in Health Care. De Gruyter, Fort Lee (2014)

    Book  Google Scholar 

  53. Ardiansyah, R.: In: MATEC Web of Conferences, vol. 42, p. 5 (2016) https://doi.org/10.1051/matecconf/20164203013

  54. Wang, T., Farajollahi, M., Choi, Y.S., Lin, I.T., Marshall, J.E., Thompson, N.M., Kar-Narayan, S., Madden, J.D.W., Smoukov, S.K.: . Interface Focus 6(4), 20160026 (2016). https://doi.org/10.1098/rsfs.2016.0026

    Article  Google Scholar 

  55. Noy, N.F., Mcguinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology. Tech. rep., Stanford University (2001). https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

  56. Protégé: Welcome to the protégé wiki! (2016). https://protegewiki.stanford.edu/wiki/Main_Page

  57. IEEE 1872 2015, Standard Ontologies for Robotics and Automation (2015)

  58. Castro, J.B., Ramanathan, A., Chennubhotla, C.S.: . PLoS ONE 8(9), e73289 (2013). https://doi.org/10.1371/journal.pone.0073289. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776812/

    Article  Google Scholar 

  59. Xu, D.: . Zidonghua Xuebao/Acta Automatica Sinica 44(10), 1729 (2018). https://doi.org/10.16383/j.aas.2018.c170715

    Article  Google Scholar 

  60. Finžgar, M., Podržaj, P.: . Strojniski Vestnik/Journal of Mechanical Engineering 63(5), 331 (2017). https://doi.org/10.5545/sv-jme.2017.4324

    Article  Google Scholar 

  61. Hashimoto, M., Akizuki, S., Takei, S.: . IEEJ Trans. Electron. Inf. Syst. 136(8), 1038 (2016). https://doi.org/10.1541/ieejeiss.136.1038

    Article  Google Scholar 

  62. Yu, L.: A Developer’s guide to the semantic web, 2nd edn. Springer, Berlin (2014)

    Google Scholar 

  63. DBpedia-Team: Learn about dbpedia (2018) http://wiki.dbpedia.org/about

  64. Wikidata-Team: Welcome to wikidata (2018) https://www.wikidata.org/wiki/Wikidata:Main_Page

  65. Fuseki-Team: Apache jena fuseki (2018) https://jena.apache.org/documentation/fuseki2/

  66. Web-Ontology-WG: SPARQL Query Language for RDF (2017) https://www.w3.org/TR/rdf-sparql-query/

  67. W3C: Ontology editors (2018) https://www.w3.org/wiki/Ontology_editors

  68. Gao, T., Fodor, P., Kifer, M.: In: 2018 IEEE/WIC/ACM International conference on web intelligence (WI), pp. 17–24. IEEE (2018) https://doi.org/10.1109/WI.2018.0-112

  69. Laird, J.E.: . AISB Quart. 171(134), 224 (2012)

    Google Scholar 

  70. Kotseruba, I., Gonzalez, O.J.A., Tsotsos, J.K.: Computing Research Repository - arXiv:https://arxiv.org/abs/1610.08602v3 (2018)

  71. Laird, J.E., Congdon, C.B., Assanie, M., Derbinsky, N., Xu, J.: The Soar User’s Manual. University of Michigan, Ann Arbor, Michigan, EUA (2017) https://soar.eecs.umich.edu/downloads/SoarManual.pdf. Version 9.6.0

  72. Laird, J.E.: The Soar 9 Tutorial. University of Michigan, Ann Arbor, Michigan, EUA (2017) https://soar.eecs.umich.edu/downloads/Documentation/SoarTutorial/. Updated for Soar 9.6.0

  73. Soar-Group: SML Quick Start Guide (2014) https://soar.eecs.umich.edu/articles/articles/soar-markup-language-sml/78-sml-quick-start-guide

  74. Gudwin, R., Paraense, A., de Paula, S., Fróes, E., Gibaut, W., Castro, E., Figueiredo, V., Raizer, K.: . Procedia Comput. Sci. 123, 155 (2018). https://doi.org/10.1016/j.procs.2018.01.025. http://linkinghub.elsevier.com/retrieve/pii/S1877050918300267

    Article  Google Scholar 

  75. ACT. ACT-R Home. http://act-r.psy.cmu.edu/ (2015)

Download references

Acknowledgements

This study was funded by the CAPES/ MEC, the CNPq (Brazilian National Research Council), the FAPESP (São Paulo Research Foundation) under the grant 2017/01687-0 and the INCT (National Institute of Science and Technology) under the grant CNPq 465755/2014-3 and FAPESP 2014/50851-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio Azevedo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, H., Belo, J.P.R. & Romero, R.A.F. Using Ontology as a Strategy for Modeling the Interface Between the Cognitive and Robotic Systems. J Intell Robot Syst 99, 431–449 (2020). https://doi.org/10.1007/s10846-019-01076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01076-0

Keywords

Navigation