Skip to main content
Log in

A Novel Superlinearly Convergent Trust Region-Sequential Quadratic Programming Approach for Optimal Gait of Bipedal Robots Via Nonlinear Model Predictive Control

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A type of trust region-sequential quadratic programming (TRSQP) approach with superlinearly convergent property is first proposed, investigated, and implemented on bipedal robots based on nonlinear model predictive control (NMPC). NMPC is utilized to predict the system behavior and optimize the control move in a receding horizon way, which will result in recursive efficiency and stability. Considering that the classical line search rules are expensive or hard in particular applications, the attempted trust region search is leveraged to avoid the drawbacks of the classical line search rules. Moreover, the feasible descent direction is contained in the trust region via a novelly truncated technique which avoids to recompute the quadratic programming subproblem (QPS) for the main search direction. Owing to some suitable conditions, the globally/superlinearly convergent performance and well-defined properties are analyzed and verified for the TRSQP. The main result is illustrated on a simple bipedal robot which is called as compass-like bipedal robot (CLBR) through numerical simulations and is used to generate dynamic locomotion via TRSQP and NMPC. Furthermore, to demonstrate the feasibility and superiority of a complex bipedal robot which is called as a high-dimensional bipedal robot, numerical simulations are conducted on the model of a three-link bipedal robot (TLBR) and a five-link robot (RABBIT). Furthermore, simulation results show that the TRSQP approach is effectiveness and superiority through comparing with the classical approaches, which included discrete mechanics and optimal control (DMOC) and hybrid zero dynamic (HZD), and control Lyapunov function-quadratic programming (CLF-QP) for the optimal gait of bipedal robot. In addition, to verify the robustness, the TLBR model with parameter’s disturbance 1.5 times is investigated and analyzed via TRSQP with NMPC technique. Last,this study develops an interesting framework to exploiting control methods on bipedal robots through accurately and effectively solving nonlinear programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Motoi, N., Suzuki, T., Ohnishi, K.: A bipedal locomotion planning based on virtual linear inverted pendulum mode. IEEE Trans. Ind. Electron. 56, 54–61 (2009)

    Google Scholar 

  2. G. Garofalo, C. Ott and A. Albu-Schäffer: Walking control of fully actuated robots based on the bipedal SLIP model. in Proceedings 2012 IEEE International Conference on Robotics and Automation River Centre, Saint Paul, Minnesota, USA, 1456–1463, 2012

  3. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Cont. 46, 51–64 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30, 1170–1193 (2011)

    Google Scholar 

  5. Ames, A.D., Galloway, K., Sreenath, K., Grizzle, J.W.: Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Cont. 59, 876–891 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Ames, A.D.: Human-inspired control of bipedal walking robots. IEEE Trans. Autom. Cont. 59, 1115–1130 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Sun, Z.B., Tian, Y.T., Li, H.Y., Wang, J.: A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discrete mechanics and optimal control. Optim. Cont. Appl. Methods. 37, 1139–1161 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Sun, Z.B., Li, H.Y., Wang, J., Tian, Y.T.: A gait optimization smoothing penalty function method for bipedal robot via DMOC. IFAC Papersonline. 48, 1148–1153 (2015)

    Google Scholar 

  9. Lim, I., Kwon, O., Park, J.H.: Gait optimization of biped robots based on human motion analysis. Robot. Auton. Syst. 62, 229–240 (2014)

    Google Scholar 

  10. Kim, I.S., Han, Y.J., Hong, Y.D.: Stability control for dynamic walking of bipedal robot with real-time capture point trajectory optimization. J. Intell. Robot. Syst. (2019). https://doi.org/10.1007/s10846-018-0965-7

  11. Poulakakis, I., Grizzle, J.W.: The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Trans. Autom. Cont. 54, 1779–1793 (2009)

    MathSciNet  MATH  Google Scholar 

  12. D. Pekarek, A. D. Ames, J. E. Marsden: Discrete mechanics and optimal control applied to the compass gait biped. in Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA, 5376–5382, 2007

  13. T. Kai and T. Shintani: A gait generation method for the compass-type biped robot based on discrete mechanics. in Proceedings of International Federation of Automatic Control, Millano, Italy, 8101–8107, 2011

  14. Kai, T., Shintani, T.: A discrete mechanics approach to gait generation on periodically unlevel grounds for the compasstype biped robot. Int. J. Adv. Res. Artif. Intell. 2, 43–51 (2013)

    Google Scholar 

  15. T. Kai and T. Shintani: A gait generation method for the compass-type biped robot on slopes via discrete mechanics. in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 675–681, 2011

  16. Mayne, D.Q.: Model predictive control: recent developments and future promise. Automatica. 50, 2967–2986 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica. 36, 789–814 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Imsland, L., Findeisen, R., Bullinger, E., Allgöwer, F., Foss, B.A.: A note on stability, robustness and performance of output feedback nonlinear model predictive control. J. Process Cont. 13, 633–644 (2003)

    Google Scholar 

  19. Z. B. Zhu, Y. Wang, X. L. Chen: Real-time control of full actuated biped robot based on nonlinear model predictive control. International Conference on Intelligent Robotics and Applications, In: Xiong C., Huang Y., Xiong Y., Liu H. (eds) Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science,Springer, Berlin, Heidelberg, 5314, 873–882(2008)

  20. R. Heydari, M. Farrokhi: Model predictive control for biped robots in climbing stairs. 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 1209–1214(2014)

  21. R. Wittmann, A. Hildebrandt, D. Wahrmann, D. Rixen, T. Buschmann: Real–time nonlinear model predictive footstep optimization for biped robots. 2015 IEEE-RAS 15th International Conference on Humanoid Robots, 2015, Seoul, Korea, 711–717 (2015)

  22. Wittmann, R., Rixen, D.: A prediction model for state observation and model predictive control of biped robots. Proc. Appl. Math. Mech. 16, 65–66 (2016)

    Google Scholar 

  23. Joe, H.M., Oh, J.H.: Balance recovery through model predictive control based on capture point dynamics for biped walking robot. Robot. Auton. Syst. 105, 1–10 (2018)

    Google Scholar 

  24. Toshani, H., Farrokhi, M.: Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming: a Lyapunov-based approach. Robot. Auton. Syst. 62, 766–781 (2014)

    Google Scholar 

  25. Jin, L., Li, S., Hu, B.: RNN models for dynamic matrix inversion: a control-theoretical perspective. IEEE Transact. Indust. Inf. 14, 189–199 (2018)

    Google Scholar 

  26. Jin, L., Li, S., Hu, B., Liu, M., Yu, J.G.: A noise-suppressing neural algorithm for solving time-varying system of linear equations: a control-based approach. IEEE Transact. Indust. Info. 15, 236–246 (2019)

    Google Scholar 

  27. Jin, L., Li, S., La, H., Zhang, X., Hu, B.: Dynamic task allocation in multi-robot coordination for moving target tracking: a distributed approach. Automatica. 100, 75–81 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Zavala, V.M., Anitescu, M.: Scalable nonlinear programming via exact differentiable penalty functions and trust-region Newton methods. SIAM J. Optim. 24, 528–558 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Conn, A.R., Gould, N.I.M., Orban, D., Toint, P.L.: A primal-dual trust-region algorithm for non-convex nonlinear programming. Math. Program. 87, 215–249 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Hu, N., Li, S.Y., Zhu, Y.X., Gao, F.: Constrained model predictive control for a hexapod robot walking on irregular terrain. J. Intell. Robot. Syst. 94, 179–201 (2019)

    Google Scholar 

  31. Sun, Z.B., Sun, Y.Y., Li, Y., Liu, K.P.: A new trust region-sequential quadratic programming approach for nonlinear systems based on nonlinear model predictive control. Eng. Optim. 51, 1071–1096 (2019)

    MathSciNet  Google Scholar 

  32. Tröltzsch, A.: A sequential quadratic programming algorithm for equality-constrained optimization without derivatives. Optim. Lett. 10, 383–399 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: superlinear convergence. Math. Program. 163, 369–410 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Geffken, S., Büskens, C.: Feasibility refinement in sequential quadratic programming using parametric sensitivity analysis. Optim. Methods Softw. 32, 754–769 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Galloway, K.S., Sreenath, K., Ames, A.D., Grizzle, J.W.: Torque saturation in bipedal roboticwalking through control Lyapunov function based quadratic programs. IEEE Access. 3, 323–332 (2013)

    Google Scholar 

  36. Sun, Z.B., Tian, Y.T., Zhang, B.C.: Control and Optimizaton for Bipedal Walking Robots. Science Press, Beijing (2018)

    Google Scholar 

  37. Sun, Z.B., Tian, Y.T., Wang, J.: A novel projected fletcher-reeves conjugate gradient approach for finite-time optimal robust controller of linear constraints optimization problem: application to bipedal walking robots. Optim. Cont. Appl. Methods. 39, 130–159 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Tian, Y.T., Sun, Z.B., Li, H.Y., Wang, J.: A review of optimal and control strategies for dynamic walking bipedal robots. Acta Automat. Sin. 42, 1142–1157 (2016)

    MATH  Google Scholar 

  39. Park, H., Sun, J., Pekarek, S., Stone, P., Opila, D., Meyer, R., Kolmanovsky, I., DeCarlo, R.: Real-time model predictive control for shipboard power management using the IPA-SQP approach. IEEE Trans. Cont. Syst. Technol. 23, 2129–2143 (2015)

    Google Scholar 

  40. Ghaemi, R., Sun, J., Kolmanovsky, I.V.: An integrated perturbation analysis and sequential quadratic programming approach for model predictive control. Automatica. 45, 2412–2418 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC and moving horizon estimation. Lect. Notes Cont. Info. Sci. 384, 391–417 (2009)

    MATH  Google Scholar 

  42. Sun, W.Y., Yuan, Y.X.: Optimization Theory and Methods. Springer Verlag, Hamburg (2006)

    MATH  Google Scholar 

  43. Panier, E.R., Tits, A.L.: A superlinearly convergent feasible method for the solution of inequality constrained optimization problems. SIAM J. Cont. Optim. 25, 934–950 (1987)

    MathSciNet  MATH  Google Scholar 

  44. Panier, E.R., Tits, A.L., Herskovits, J.N.: A QP-free global convergent, locally superlinearly convergent algorithm for inequality constrained optimization. SIAM J. Cont. Optim. 26, 788–811 (1988)

    MATH  Google Scholar 

  45. Zoutendijk, G.: Methods of Feasible Directions. Elsevier, Amsterdam (1960)

    MATH  Google Scholar 

  46. Topkis, D.M., Veinott, A.F.: On the convergence of some feasible direction algorithms for nonlinear programming. SIAM J. Cont. 5, 268–279 (1967)

    MathSciNet  MATH  Google Scholar 

  47. Lawrencen, C.T., Tits, A.L.: A computationally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11, 1092–1118 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Sun, Z.B., Duan, F.J., Xu, C.L., Tian, Y.T.: A superlinearly convergent trust region-SQP algorithm for inequality constrained optimization. Acta Mathematic. Appl. Sin. 37, 878–890 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Zhu, Z.B.: An efficient sequential quadratic programming algorithm for nonlinear programming. J. Comput. Appl. Math. 175, 447–464 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Z. B. Zhu: Research on feasible sequential quadratic programming algorithms for nonlinear optimization. Xi an, Xi an Jiaotong University: China, 2004

  51. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor and Francis Group, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbo Sun.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, B., Sun, Y. et al. A Novel Superlinearly Convergent Trust Region-Sequential Quadratic Programming Approach for Optimal Gait of Bipedal Robots Via Nonlinear Model Predictive Control. J Intell Robot Syst 100, 401–416 (2020). https://doi.org/10.1007/s10846-020-01174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01174-4

Keywords

Navigation