Skip to main content

Advertisement

Log in

Biomimetic Energy-Based Humanoid Gait Design

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

One of the challenges facing humanoid robots is the design of a more human-like gait. In this paper, we propose a new paradigm for gait design for humanoids that is founded in the field of Kinesiology and is based on energy-exchange between potential and kinetic energies. Additionally, we propose an energy-based controller, which not only maintains the desired gait but is also more efficient than current controllers in terms of energy expenditure and joint motor torque exertion. Experiments were performed in simulation on Webots and on an actual humanoid platform, the Nao. Results indicate an improvement in mechanical energy consumption by 10% in simulations, and 1.8% on the Nao. Qualitatively, the proposed gait yielded motions that are more human-like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sminchisescu, C., Kanaujia, A.: Zhiguo li; metaxas, d.;“conditional models for contextual human motion” recognition computer vision, 2005. iccv 2005. In: Tenth IEEE International Conference on, Page (s), vol. 1815 (1808)

  2. Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. Comput. Vis. Image Understand, 73(3), 428–440 (1999)

    Article  Google Scholar 

  3. Hamilton, N.P.: Kinesiology: Scientific Basis of Human Motion. Brown & Benchmark (2011)

  4. Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schroeder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008)

    Article  Google Scholar 

  5. Perry, J., Davids, J.R., et al.: Gait analysis: Normal and pathological function. J. Pediatric Orthopaed. 12(6), 815 (1992)

    Article  Google Scholar 

  6. Oatis, C.A., et al.: Kinesiology: The Mechanics and Pathomechanics of Human Movement. Lippincott Williams & Wilkins, Philadelphia (2004)

    Google Scholar 

  7. Crosbie, J., Vachalathiti, R., Smith, R.: Patterns of spinal motion during walking. Gait & Posture 5(1), 6–12 (1997)

    Article  Google Scholar 

  8. Uyar, E., Baser, O., Baci, R., Özċivici, E.: Investigation of bipedal human gait dynamics and knee motion control. Izmir, Turkey: Dokuz Eylül University-Faculty of Engineering Department of Mechanical Engineering Retrieved August (2009)

  9. Ivancevic, V.G., Ivancevic, T.T.: Human-Like Biomechanics: A Unified Mathematical Approach to Human Biomechanics and Humanoid Robotics, vol. 28. Springer Science & Business Media (2008)

  10. Feldman, A.G.: Origin and advances of the equilibrium-point hypothesis. In: Progress in Motor Control, pp 637–643. Springer (2009)

  11. Feldman, A.G., Levin, M.F.: The equilibrium-point hypothesis–past, present and future. In: Progress in Motor Control, pp 699–726. Springer (2009)

  12. Cavagna, G.A., Heglund, N.C., Taylor, C.R.: Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 233(5), R243–R261 (1977)

    Article  Google Scholar 

  13. Hallemans, A., Aerts, P., Otten, B., De Deyn, P.P., De Clercq, D.: Mechanical energy in toddler gait a trade-off between economy and stability? J. Exper. Biol. 207(14), 2417–2431 (2004)

    Article  Google Scholar 

  14. Adams, D.: Cga normative gait database. http://www.clinicalgaitanalysis.com/data/ (2013)

  15. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3d linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. In: Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, vol. 1, pp 239–246. IEEE (2001)

  16. Filipović, M.: Dynamic of biped movement on a mobile platform in the presence elasticity elements. Sci. Techn. Rev. ISSN 206, 15–24 (1820)

    Google Scholar 

  17. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  18. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method for real-time gait planning for humanoid robots. Int. J. Humanoid Robot. 3(01), 1–19 (2006)

    Article  Google Scholar 

  19. Komura, T., Leung, H., Kudoh, S., Kuffner, J.: A feedback controller for biped humanoids that can counteract large perturbations during gait. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 1989–1995. IEEE (2005)

  20. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: A step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp 200–207. IEEE (2006)

  21. Pratt, J., Pratt, G.: Intuitive control of a planar bipedal walking robot. In: 1998 IEEE International Conference on Robotics and Automation, 1998. Proceedings, vol. 3, pp 2014–2021. IEEE (1998)

  22. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2017)

    Article  Google Scholar 

  23. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Indus. Inform. 13(1), 48–59 (2016)

    Article  Google Scholar 

  24. Kong, L., He, W., Yang, C., Li, Z., Sun, C.: Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning. IEEE Trans. Cybern. 49(8), 3052–3063 (2019)

    Article  Google Scholar 

  25. Colasanto, L., Tsagarakis, N.G., Caldwell, D.G.: A compact model for the compliant humanoid robot coman. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp 688–694. IEEE (2012)

  26. Hyon, S.H., Hale, J.G., Cheng, G.: Full-body compliant human–humanoid interaction: Balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)

    Article  Google Scholar 

  27. Collins, J.J., De Luca, C.J.: Random walking during quiet standing. Phys. Rev. Lett. 73(5), 764 (1994)

    Article  Google Scholar 

  28. Wright, A., Rothenberg, S.: Posture: Types, Assessment, and Control. Human anatomy and physiology. Nova Science (2011) https://books.google.com.lb/books?id=Mgn_tgAACAAJ

  29. Oatis, C.A.: The Mechanics and Pathomechanics of Human Movement. Williams and Wilkins Lippincott (2003)

  30. Gregorio, P., Ahmadi, M., Buehler, M.: Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 27(4), 626–634 (1997)

    Article  Google Scholar 

  31. Ortega, R., Van Der Schaft, A.J., Mareels, I., Maschke, B.: Putting energy back in control. IEEE Control. Syst. 21(2), 18–33 (2001)

    Article  Google Scholar 

  32. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. IFAC Proc. 29(1), 2828–2832 (1996)

    Article  Google Scholar 

  33. Spong, M.W.: The swing up control problem for the acrobot. IEEE Control Syst. 15(1), 49–55 (1995)

    Article  Google Scholar 

  34. Nemoto, T., Mohan, R.E., Iwase, M.: Energy-based control for a biologically inspired hexapod robot with rolling locomotion. Digital Commun. Netw. 1(2), 125–133 (2015)

    Article  Google Scholar 

  35. Agrawal, S., Yadav, R.S., et al.: A preemption control technique for system energy minimization of weakly hard real-time systems. In: Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp 201–215. Springer (2008)

  36. Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.M., Hirzinger, G., Rus, D.: Energy-efficient autonomous four-rotor flying robot controlled at 1 khz. In: 2007 IEEE International Conference on Robotics and Automation, pp 361–366. IEEE (2007)

  37. Schäffer, A.A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimböck, T., Wolf, S., Hirzinger, G.: Soft robotics, from torque feedback-controlled lightweight robots to intrinsically compliant systems. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)

    Article  Google Scholar 

  38. Khansari-Zadeh, S.M., Billard, A.: Learning control lyapunov function to ensure stability of dynamical system-based robot reaching motions. Robot. Auton. Syst. 62(6), 752–765 (2014)

    Article  Google Scholar 

  39. Matsusaka, K., Uemura, M., Kawamura, S.: Realization of highly energy efficient pick-and-place tasks using resonance-based robot motion control. Adv. Robot. 30(9), 608–620 (2016)

    Article  Google Scholar 

  40. Khatib, O., Warren, J., De Sapio, V., Sentis, L.: Human-like motion from physiologically-based potential energies. In: On Advances in Robot Kinematics, pp 145–154. Springer (2004)

  41. Nansai, S., Iwase, M., Elara, M.R.: Energy based position control of jansen walking robot. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 1241–1246. IEEE (2013)

  42. Hu, Y., Mombaur, K.: Influence of compliance modulation on human locomotion. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 4130–4137. IEEE (2017)

  43. Otani, T., Hashimoto, K., Miyamae, S., Ueta, H., Sakaguchi, M., Kawakami, Y., Lim, H., Takanishi, A.: Angular momentum compensation in yaw direction using upper body based on human running. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 4768–4775. IEEE (2017)

  44. Chao, K., Hur, P.: A step towards generating human-like walking gait via trajectory optimization through contact for a bipedal robot with one-sided springs on toes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4848–4853. IEEE (2017)

  45. You, Y., Zhou, C., Li, Z., Tsagarakis, N.: A study of nonlinear forward models for dynamic walking. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2017.7989399, pp 3491–3496 (2017)

  46. Shafiee-Ashtiani, M., Yousefi-Koma, A., Shariat-Panahi, M.: Robust bipedal locomotion control based on model predictive control and divergent component of motion. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2017.7989401, pp 3505–3510 (2017)

  47. Asano, F., Luo, Z.W.: Asymptotically stable gait generation for biped robot based on mechanical energy balance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp 3327–3333. IEEE (2007)

  48. Morales, D.O., La Hera, P.X.: Design of energy efficient walking gaits for a three-link planar biped walker with two unactuated degrees of freedom. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp 148–153. IEEE (2012)

  49. Sun, Z., Roos, N.: An energy efficient dynamic gait for a nao robot. In: 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp 267–272. IEEE (2014)

  50. Godage, I.S., Wang, Y., Walker, I.D.: Energy based control of compass gait soft limbed bipeds. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp 4057–4064. IEEE (2014)

  51. KhazeniFard, A., Bahrami, F., Andani, M.E., Ahmadabadi, M.N.: An energy efficient gait trajectory planning algorithm for a seven linked biped robot using movement elements. In: 2015 23rd Iranian Conference on Electrical Engineering (ICEE), pp 1006–1011. IEEE (2015)

  52. Holm, J.K., Spong, M.W.: Kinetic energy shaping for gait regulation of underactuated bipeds. In: IEEE International Conference on Control Applications, 2008. CCA 2008, pp 1232–1238. IEEE (2008)

  53. Aleshinsky, S.Y.: An energy ‘sources’ and ‘fractions’ approach to the mechanical energy expenditure problem—i. Basic concepts, description of the model, analysis of a one-link system movement. J. Biomech. 19(4), 287–293 (1986)

    Article  Google Scholar 

  54. Zhang, L., Zhou, C., Zhang, P., Song, Z., Kong, Y.P., Han, X.: Optimal energy gait planning for humanoid robot using geodesics. In: 2010 IEEE Conference on Robotics Automation and Mechatronics (RAM), pp 237–242. IEEE (2010)

  55. Roussel, L., Canudas-de Wit, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. In: ICRA, pp 2036–2041 (1998)

  56. Maalouf, N., Elhajj, I.H., Asmar, D., Shammas, E.: Energy minimization in humanoid gait. In: 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp 1–6. IEEE (2016)

  57. Kibushi, B., Hagio, S., Toshio, M., Kouzaki, M.: Lower local dynamic stability and invariable orbital stability in the activation of muscle synergies in response to accelerated walking speeds. Front. Human Neurosci. 12, 485 (2018)

    Article  Google Scholar 

  58. van Hofslot, B.: Humanoid robot balance control using center of mass height variation (2019)

  59. Maalouf, N., Elhajj, I.H., Shammas, E., Asmar, D.: Energy-based control applied to humanoid robots. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 2591–2598. IEEE (2017)

  60. Documentation, N.R.: Aldebaran (2017)

Download references

Acknowledgments

This research was funded and supported by AUB University Research Board and the Lebanese National Council for Scientific Research. The authors would like to acknowledge the American University of Beirut (AUB) and the National Council for Scientific Research of Lebanon (CNRS-L) for granting a doctoral fellowship to Noel J. Maalouf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel Maalouf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maalouf, N., Elhajj, I.H., Shammas, E. et al. Biomimetic Energy-Based Humanoid Gait Design. J Intell Robot Syst 100, 203–221 (2020). https://doi.org/10.1007/s10846-020-01179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01179-z

Keywords

Navigation