Skip to main content
Log in

Experimental Validation of HeritageBot III, a Robotic Platform for Cultural Heritage

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Activity in Cultural Heritage frames aims to have a good monitoring of unknown cultural heritage also in an inaccessible site decreasing the cost of interventions. There are several robotics systems available both as rovers and drones. They are suited for inspection tasks in risky environments or for surveillance purposes provided of several sensors able to detect and monitor the area under examination, sometimes they can be also equipped with an end-effector for manipulation tasks or to collect objects. This paper introduces HeritageBot III (HBIII), a service robot for Cultural Heritage frames, which consists in a robotic platform with a modular design for both ground locomotion and flight capability. The proposed design is able to merge the advantages of drone and legged mobile robots in an innovative platform, able to navigate in most unknown environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceccarelli, M., Cigola, M.: Service Robots for Restoration of Goods of Cultural Heritage. Chapter 12. In: Service Robots and Robotics-Design and Application, Engineering Science Reference, pp. 213–228. IGI Global, Hershey (2012)

    Chapter  Google Scholar 

  2. Ippolito, A., Cigola, M.: Handbook of Research on Emerging Technologies for Architectural and Archeological Heritage. Hershey, IGI Global (2017)

    Book  Google Scholar 

  3. Wang, L., Wang, H.: A survey on insulator inspection robots for power transmission lines. In: 4th international conference on applied robotics for the power industry (CARPI), pp. 1–6. IEEE (2016)

  4. Lu, S., Zhang, Y., Su, J.: Mobile robot for power substation inspection: a survey. IEEE/CAA J. Autom. Sin. (2017)

  5. Nayak, A., Pradhan, S.K.: Design of a new in-pipe inspection robot. Procedia Eng. 97, 2081–2091 (2014)

    Article  Google Scholar 

  6. Almadhoun, R., Taha, T., Seneviratne, L., Dias, J., Cai, G.: A survey on inspecting structures using robotic systems. Int. J. Adv. Robot. Syst. 13(6), 1729881416663664 (2016)

    Article  Google Scholar 

  7. Myung H, Wang Y, Kang SC, Chen X. Survey on robotics and automation technologies for civil infrastructure. 2014

    Book  Google Scholar 

  8. Murphy, R.R.: A decade of rescue robots. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5448–5449. IEEE (2012)

  9. Gohl, P., Burri, M., Omari, S., Rehder, J., Nikolic, J., Achtelik, M., Siegwart, R.: Towards autonomous mine inspection. In: 3rd International Conference on Applied Robotics for the Power Industry (CARPI) 2014, pp. 1–6 (2014)

    Google Scholar 

  10. Olszewska, J.I., Barreto, M., Bermejo-Alonso, J., Carbonera, J., Chibani, A., Fiorini, S., Goncalves, P., Habib, M., Khamis, A., Olivares, A., de Freitas, E.P.: Ontology for autonomous robotics. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, pp. 189–194 (2017)

    Google Scholar 

  11. Krasny, D.P., Orin, D.E.: A 3D galloping quadruped robot. In: Climbing and Walking Robots, pp. 467–474 (2006)

    Chapter  Google Scholar 

  12. Carbone, G., Ceccarelli, M.: A low-cost easy-operation hexapod walking machine. Int. J. Adv. Robot. Syst. 5(2), 161–166 (2008)

    Article  Google Scholar 

  13. Apvrille, L., Tanzi, T., Dugelay, J.L.: Autonomous drones for assisting rescue services within the context of natural disasters. In: General Assembly and Scientific Symposium (URSI GASS) 2014 XXXIth URSI, pp. 1–4 (2014)

    Google Scholar 

  14. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. of Micro Air Vehicles. 1(4), 217–228 (2009)

    Article  Google Scholar 

  15. Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., Siegwart, R.: Structural Inspection Path Planning via Iterative Viewpoint Resampling with Application to Aerial Robotics. In: IEEE International Conference on Robotics & Automation (ICRA 2015), Seattle, Washington, USA (2015)

    Google Scholar 

  16. Williams, R., Konev, B., Coenen, F.: Multi-agent Environment Exploration with AR.Drones. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science, vol. 8717. Springer, Cham

  17. Stek, T.D.: Drones over Mediterranean landscapes. The potential of small UAV's (drones) for site detection and heritage management in archaeological survey projects: a case study from Le Pianelle in the Tappino Valley, Molise (Italy). J. Cult. Herit. 22, 1066–1071 (2016)

    Article  Google Scholar 

  18. Smith, N.G., Passone, L., Al-Said, S., Al-Farhan, M., Levy, T.E.: Drones in archaeology: integrated data capture, processing, and dissemination in the al-Ula Valley, Saudi Arabia. Near East. Archaeol. (NEA). 77(3), 176–181 (2014)

    Article  Google Scholar 

  19. Oczipka, M., Bemmann, J., Piezonka, H., Munkabayar, J., Ahrens, B., Achtelik, M., Lehmann, F.: Small drones for geo-archaeology in the steppe: locating and documenting the archaeological heritage of the Orkhon Valley in Mongolia. In: Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX, vol. 7478, p. 747806. International Society for Optics and Photonics (2009)

  20. Brutto, M.L., Garraffa, A., Meli, P.: UAV platforms for cultural heritage survey: first results. ISPRS annals of the photogrammetry, remote sensing and spatial. Inf. Sci. 2(5), 227 (2014)

    Google Scholar 

  21. Lega, M., d’Antonio, L., Napoli, R.M.A.: Cultural heritage and waste heritage: advanced techniques to preserve cultural heritage, exploring just in time the ruins produced by disasters and natural calamities. WIT Trans. Ecol. Environ. 140, 123–134 (2010)

    Article  Google Scholar 

  22. Ceccarelli, M., Cafolla, D., Carbone, G., Russo, M., Cigola, M., Senatore, J.L., Gallozzi, A., Di Maccio, R., Ferrante, F., Bolici, F., Supino, S., Colella, N., Bianchi, M., Intrisano, C., Recinto, G., Micheli, A.P., Vistocco, D., Nuccio, M.R.: Porcelli M. HeritageBot Service Robot assisting in Cultural Heritage. In: Robotic Computing (IRC), IEEE First International Workshop on Robotic Computing for Cultural Heritage (IRCCH 2017), Taichung City, Taiwan, pp. 440–445 (2017)

    Google Scholar 

  23. Ceccarelli, M., Cafolla, D., Russo, M., Carbone, G.: Design and construction of a demonstrative HeritageBot platform. In advances in service and industrial robotics. Mech. Mach. Sci. 49, 355–362 (2017)

    Article  Google Scholar 

  24. Russo, M., Herrero, S., Altuzarra, O., Ceccarelli, M.: Kinematic analysis and multi-objective optimization of a 3-UPR parallel mechanism for a robotic leg. Mech. Mach. Theory. 120(February 2018), 192–202, ISSN 0094-114X (2017). https://doi.org/10.1016/j.mechmachtheory.2017.10.004

    Article  Google Scholar 

  25. Russo, M., Ceccarelli, M., Takeda, Y.: Force transmission and constraint analysis of a 3-SPR parallel manipulator. In: Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, December 2017. SAGE publishing (2017). https://doi.org/10.1177/0954406217750190

  26. Cafolla, D., Ceccarelli, M., Wang, M.F., Carbone, G.: 3D printing for feasibility check of mechanism design. International Journal of Mechanics and Control. 17(1), 3–12 (2016)

    Google Scholar 

  27. Actuonix: Actuonix Miniature Linear Actuator, Datasheet, L-12 and L-16 (2018)

  28. Arduino Education: Arduino and Genuino Board, Datasheet (2018)

    Google Scholar 

  29. Russo M, Cafolla D, Ceccarelli M. Device for tripod leg. Italian Patent n° IT102016000097258, 28/09/2016

  30. Ceccarelli M, Cafolla D, Carbone G, Russo M. Device with legs and helices. Italian Patent n° IT102016000103321, 14/10/2016

  31. Adafruit. Adafruit Motor/Stepper/Servo Shield for Arduino, Datasheet, Rev. 2.3, 2018

  32. Ceccarelli, M., Cafolla, D., Russo, M., Carbone, G.: Heritage bot platform for Service in Cultural Heritage Frames. Int. J. Adv. Robot. Syst. 15(4), 1729881418790692 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cafolla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cafolla, D., Russo, M. & Ceccarelli, M. Experimental Validation of HeritageBot III, a Robotic Platform for Cultural Heritage. J Intell Robot Syst 100, 223–237 (2020). https://doi.org/10.1007/s10846-020-01180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01180-6

Keywords

Navigation