Skip to main content

Advertisement

Log in

Fuzzy Adaptive Neurons Applied to the Identification of Parameters and Trajectory Tracking Control of a Multi-Rotor Unmanned Aerial Vehicle Based on Experimental Aerodynamic Data

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The propulsion subsystem of multi-rotor Unmanned Aerial Vehicles (UAV) is one of the most complex due to the aerodynamic, aero-elastic and electromechanical elements it comprises. Therefore, accurate models of this subsystem can be difficult to work with. Therefore, simplified models are normally used for the design of control and navigation algorithms. Considering this, the effectiveness of these algorithms is heavily dependent on the identification process used for the estimation of the parameters of the simplified propulsion model. On the other hand, the novel method of fuzzy adaptive neurons (FANs) have interesting characteristics that make them attractive for applications in which a fast response and good precision are required. In this article, the identification of the parameters of the propulsion system and the trajectory tracking of a multi-rotor UAV using FANs is explored. The efficient learning algorithm of the FANs is applied to identify the parameters of a simplified model of the propulsion system and to the self-tuning proportional integral derivative (PID) controllers of the trajectory tracking system. The proposed simplified model with the identified parameters is tested with experimental data obtained with low speed wind tunnels. The proposed PID controllers with self-tuning gains defined by the algorithm of the FANs for trajectory tracking system, are verified with simulations in MATLAB/Simulink® environment. The results showed that the parameter identification and trajectory tracking with PID controllers with self-tuning gains defined by the algorithm of the FANs, are suitable for estimating the parameters of the simplified model and track the trajectory with better error reduction than a classical PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Derafa, A. Ouldali, T. Madani, and A. Benallegue: Non-linear control algorithm for the four rotors UAV attitude tracking problem. Aeronautical Journal, 115(1165) (2011)

  2. I. Choi, and H. Bang: Adaptive command filtered backstepping tracking controller design for quadrotor unmanned aerial vehicle. Proceedings Of The Institution Of Mechanical Engineers Part G-Journal Of Aerospace Engineering, 226(G5) (2011)

  3. D. Lee, H. Kim, and S. Sastry: Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter. International Journal Of Control Automation And Systems, 7(3) (2009)

  4. UI Haq, A. A Cholette, M. E. and Djurdjanovic, D.: A Dual-Mode Model Predictive Control Algorithm Trajectory Tracking in Discrete-Time Nonlinear Dynamic Systems. Technical Brief. Journal of Dynamic Systems, Measurement and Control, Vol. 139(4), 8 p. (2016). DOI: https://doi.org/10.1115/1.4035096

  5. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  7. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, Madaline, and Backpropagation. Proc. IEEE. 78(9), 1415–1442 (1990)

    Article  Google Scholar 

  8. Gerstner, W., and Werner, K.: Spiking Neuron Models. Ed. Cambridge University Press, pp. 477 (2002) ISBN-10: 0511075065

  9. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  10. J. I. Espinosa-Ramos, N. Cruz-Cortés, and Vázquez, R. A.: Creation of Spiking Neuron Models applied in Pattern Recognition Problems. The 2013 International joint conference on neural networks (IJCNN), IEEE. (2013) DOI: https://doi.org/10.1109/IJCNN.2013.6706795

  11. Yu, Q., Tang, H., Tan, K.C., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing. 138, 3–13 (2014)

    Article  Google Scholar 

  12. Zadeh, L.A.: Theory of Fuzzy Sets. Encyclopedia of Computer Science and Technology, Marcel Dekker, Nueva York, E.U.A (1977)

    Google Scholar 

  13. Dubois, D., Prade, H.: Fuzzy sets and systems. North-Holland Publishing Company. 1982, 1–17 (1982)

    MATH  Google Scholar 

  14. M.M. Gupta, and J. Qi: On Fuzzy Neuron Models. Fuzzy logic for the management of uncertainty. Ed. Lotfi A. Zadeh and Janusz Kacprzyk, 479–491 (1992) ISBN: 0–471–54799-9

  15. Pérez, J.L., Ramírez, A.: Two new models of integrative fuzzy neuron. Instrumentation & Development. 5(3), 140–145 (2001)

    Google Scholar 

  16. A. Ramírez, and J. L. Pérez: A Fuzzy Gupta Integrator Neuron Model with Spikes Response and Axonal delay. In Advances in Artificial Intelligence & Engineering Cybernetics, George E. Lasker (Ed.), IX, Windsor, Canada: IIAS, 12–16. (2002) ISBN: 1–894613–44-9

  17. Pérez, S.J.L., Garcés, M.A., Cabiedes, C.F., Miranda, V.A.: Electronic model of a Dubois fuzzy integration neuron. Journal of Applied Research and Technology. 7(1), 73–82 (2009)

    Article  Google Scholar 

  18. Ramírez-Mendoza, A., Pérez-Silva, J.L., Lara-Rosano, F.: Electronic implementation of a fuzzy neuron model with a Gupta integrator. Journal of Applied Research and Technology. 9(3), 380–393 (2011) ISSN: 1665-6423http://cibernetica.ccadet.unam.mx/jart/vol9_3/electronic_10.pdf

    Article  Google Scholar 

  19. A. Ramírez-Mendoza: Study of the response of the connection of Adaptive Fuzzy Spiking Neurons with self-synapse in each single neuron. 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Ciudad del Carmen, Campeche, México, 1–6 (2014) ISBN: 978–1-4799- 6228-0

  20. Ramírez-Mendoza, A.M.E.: Design of a PID Controller Based on Adaptive Fuzzy Spiking Neurons. Congreso Nacional de Control Automático (CNCA), San Luis Potosí, México (2018) ISSN 2594-2492

    Google Scholar 

  21. A. M. E. Ramírez-Mendoza, and W. Yu: A novel learning algorithm for Adaptive Fuzzy Neural Networks: Application to the neuro-fuzzy design of control law for a PID controller. (under review)

  22. A. M. E. Ramírez-Mendoza: Modeling the Spike Response for Adaptive Fuzzy Spiking Neurons with Application to a Fuzzy XOR. Computer Modeling in Engineering & Sciences (CMES), Tech Science Press, 115(3), 295–311 (2018) doi:10.3970/cmes.2018.00239. ISSN:1526–1492(printed). ISSN:1526–1506 (online)

  23. A. M. E. Ramírez-Mendoza, J. R. Covarrubias-Fabela, L. A. Amezquita Brooks and D. Hernández-Alcántara: Parameter Identification using Fuzzy Neurons: Application to Drones and Induction Motors. DYNA, 93(1), 75–81 (2018) DOI: https://doi.org/10.6036/8439

  24. R. Fabela, C. Santana, A. Naranjo, L. Amezquita-Brooks, E. Liceaga-Castro, and M. Torres-Reyna: Experimental characterization of a small and micro unmanned aerial vehicle propulsion systems. AIAA Atmospheric Flight Mechanics Conference, AIAA SciTech Forum, San Diego, California, USA, AIAA 2016–1530 (2016)

  25. Beard, R.W., McLain, T.W.: Small Unmanned Aircraft: Theory and Practice. Princeton University Press, USA (2012)

    Book  Google Scholar 

  26. L. Jin, M. M. Gupta, and P. N. Nikiforuk: Modeling and Control of Flexible Space Structures using Neural Networks. IEEE, 291–298 (1993)

  27. T. Söderström and Stoica, P.: System Identification. Prentice Hall International (UK) Ltd. (1989) ISBN: 0138812365

  28. R. V. Jategaonkar: Flight Vehicle System Identification: A Time Domain Methodology. Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, 216 (2006)

  29. R. López, S. Salazar, I. González-Hernández and R. Lozano: Real-Time Parameters Identification for a Quad-rotor Mini-aircraft Using Adaptive Control. International Conference on Unmanned Aircraft Systems (ICUAS), (Orlando, FL, USA), 499–505 (2014) IEEE 978–1–4799-2376-2/14

  30. O. Martinez, L. Amezquita-Brooks, E. Liceaga-Castro, O. Garcia-Salazar and D. Martinez: Experimental assessment of wind gust effect on PVTOL aerial vehicles using a wind tunnel, Electronics, ROPEC, (2015) IEEE 978–1–4673-7121-6/15

  31. A. M. E. Ramírez Mendoza: Study of the state of art in experimental aerodynamics testing with unmanned aerial vehicles, UAVs in Mexico. XIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico (CIINDET), Tecnologías Modernas para la Industria y la Educación, IEEE, Cuernavaca, Morelos, México, ID: 51, 1–4 (2016) ISBN: 978–607–95255-7-6

  32. Demir, B.E., Bayir, R., Duran, F.: Real-time trajectory of an unmanned aerial vehicle using a self-tuning fuzzy proportional integral derivative controller. International Journal of Micro Air Vehicles. 8(4), 252–268 (2016). https://doi.org/10.1177/1756829316675882

    Article  Google Scholar 

  33. M. V. Cook: Flight Dynamics Principles. Elsevier Ltd., Great Britain, 18–21 (2007) ISBN: 978–0–7506-6927–6

  34. Björkenstam, S., Leyendecker, S., Linn, J., Carlson, J.S., Lennartson, B.: Inverse dynamics for discrete geometric mechanics of multibody systems with application to direct optimal control. J Comput Nonlin Dyn. 13(10), 15 (2018). https://doi.org/10.1115/1.4040780

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the support of the Postdoctoral Scholarship Program of the National Council of Science and Technology (CONACYT), together with the Department of Automatic Control of Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute (IPN), to the CONACYT Research Fellows Program for young researchers, and the Center for Research and Innovation in Aeronautical Engineering (CIIIA) of the Faculty of Electrical Mechanical Engineering (FIME) of the Autonomous University of Nuevo León (UANL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. E. Ramírez-Mendoza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was supported by CONACYT-CIIIA, FIME, UANL; CONACYT-CINVESTAV, IPN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Mendoza, A.M.E., Covarrubias-Fabela, J.R., Amezquita-Brooks, L.A. et al. Fuzzy Adaptive Neurons Applied to the Identification of Parameters and Trajectory Tracking Control of a Multi-Rotor Unmanned Aerial Vehicle Based on Experimental Aerodynamic Data. J Intell Robot Syst 100, 647–665 (2020). https://doi.org/10.1007/s10846-020-01198-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01198-w

Keywords

Navigation