Skip to main content
Log in

Motion Planning by Sampling in Subspaces of Progressively Increasing Dimension

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper introduces an enhancement to traditional sampling-based planners, resulting in efficiency increases for high-dimensional holonomic systems such as hyper-redundant manipulators, snake-like robots, and humanoids. Despite the performance advantages of modern sampling-based motion planners, solving high dimensional planning problems in near real-time remains a considerable challenge. The proposed enhancement to popular sampling-based planning algorithms is aimed at circumventing the exponential dependence on dimensionality, by progressively exploring lower dimensional volumes of the configuration space. Extensive experiments comparing the enhanced and traditional version of RRT, RRT-Connect, and Bidirectional T-RRT on both a planar hyper-redundant manipulator and the Baxter humanoid robot show significant acceleration, up to two orders of magnitude, on computing a solution. We also explore important implementation issues in the sampling process and discuss the limitations of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayazit, O. B., Xie, D., Amato, N. M.: Iterative Relaxation of Constraints: a Framework for Improving Automated Motion Planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3433–3440 (2005)

  2. Berenson, D., Kuffner, J., Choset, H.: An Optimization Approach to Planning for Mobile Manipulation. In: IEEE International Conference on Robotics and Automation, pp. 1187–1192 (2008)

  3. Bertram, D., Kuffner, J., Dillmann, R., Asfour, T.: An Integrated Approach to Inverse Kinematics and Path Planning for Redundant Manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1874–1879 (2006)

  4. Canny, J.: The complexity of robot motion planning. MIT Press, Cambridge (1988)

  5. Carpin, S., Pagello, E.: On Parallel RRTs for Multi-Robot Systems. In: Proceedings of 8Th Conf. Italian Association for Artificial Intelligence, pp. 834–841 (2002)

  6. Chamzas, C., Shrivastava, A., Kavraki, L.E.: Using Local Experiences for Global Motion Planning. arXiv:1903.08693 (2019)

  7. Chitta, S., Sucan, I., Cousins, S.: Moveit![ros topics]. IEEE Robot. Autom. Mag. 19(1), 18–19 (2012)

    Article  Google Scholar 

  8. Esposito, J. M.: Conditional density growth (cdg) model: a simplified model of rrt coverage for kinematic systems. Robotica 31(05), 733–746 (2013)

    Article  Google Scholar 

  9. Gammell, J. D., Srinivasa, S. S., Barfoot, T. D.: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. arXiv:1404.2334 (2014)

  10. Gammell, J. D., Srinivasa, S. S., Barfoot, T. D.: Batch Informed Trees (Bit*): Sampling-Based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs. In: 2015 IEEE International Conference On Robotics and Automation (ICRA), pp. 3067–3074. IEEE (2015)

  11. Gipson, B., Moll, M., Kavraki, L. E.: Resolution Independent Density Estimation for Motion Planning in High-Dimensional Spaces. In: IEEE International Conference on Robotics and Automation, pp. 2437–2443 (2013)

  12. Gochev, K., Cohen, B., Butzke, J., Safonova, A., Likhachev, M.: Path Planning with Adaptive Dimensionality. In: Fourth Annual Symposium on Combinatorial Search (2011)

  13. Jaillet, L., Cortés, J., Siméon, T.: Transition-based RRT for Path Planning in Continuous Cost Spaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2145–2150 (2008)

  14. Jia, B., Pan, Z., Manocha, D.: Fast Motion Planning for High-Dof Robot Systems Using Hierarchical System Identification. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5140–5147. IEEE (2019)

  15. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: Stomp: Stochastic Trajectory Optimization for Motion Planning. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4569–4574. IEEE (2011)

  16. Kavraki, L. E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  17. Kim, D. H., Choi, Y. S., Park, T., Lee, J. Y., Han, C.S.: Efficient Path Planning for High-DOF Articulated Robots with Adaptive Dimensionality. In: IEEE International Conference on Robotics and Automation, pp. 2355–2360 (2015)

  18. Klamt, T., Behnke, S.: Towards learning abstract representations for locomotion planning in high-dimensional state spaces. arXiv:1903.02308 (2019)

  19. Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion Planning for Humanoid Robots. In: The Eleventh Int. Symposium Robotics Research, pp. 365–374 (2005)

  20. Kuffner, J. J., Lavalle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 995–1001 (2000)

  21. Kuffner, J.J. Jr, Kagami, S., Nishiwaki, K., Inaba, M., Inoue, H.: Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12(1), 105–118 (2002)

    Article  Google Scholar 

  22. LaValle, S. M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report TR 98-11, Computer Science Department of Iowa State University (1998)

  23. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

  24. Lee, I., Oh, J., Bae, H.: Constrained whole body motion planning in task configuration and time. Int. J. Precis. Eng. Manuf. 19(11), 1651–1658 (2018)

    Article  Google Scholar 

  25. Liu, H., Sun, Q., Zhang, T.: Hierarchical RRT for Humanoid Robot Footstep Planning with Multiple Constraints in Complex Environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3187–3194 (2012)

  26. Otani, T., Koshino, M.: Applying a path planner based on RRT to cooperative multirobot box-pushing. Artif. Life Robot. 13(2), 418–422 (2009)

    Article  Google Scholar 

  27. Park, J. J., Kim, H. S., Song, J.B.: Collision-free path planning for a redundant manipulator based on PRM and potential field methods. J. Inst. Control Robot. Syst. 17(4), 362–367 (2011)

    Article  Google Scholar 

  28. Qian, Y., Rahmani, A.: Path Planning Approach for Redundant Manipulator Based on Jacobian Pseudoinverse-RRT Algorithm. In: 6Th International Conference on Intelligent Robotics and Applications, pp. 706–717, Busan (2013)

  29. Ratliff, N., Zucker, M., Bagnell, J. A., Srinivasa, S.: Chomp: Gradient Optimization Techniques for Efficient Motion Planning. In: International Conference on Robotics and Automation (ICRA), pp. 489–494. IEEE (2009)

  30. Reif, J. H.: Complexity of the Generalized Mover’s Problem. Technical Report, Harvard University, Cambridge, Aiken Computation Lab (1985)

  31. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Rese. 33(9), 1251–1270 (2014)

    Article  Google Scholar 

  32. Shkolnik, A., Tedrake, R.: Path Planning in 1000+ Dimensions Using a Task-Space Voronoi Bias. In: IEEE International Conference on Robotics and Automation, pp. 2061–2067. IEEE (2009)

  33. Solovey, K., Salzman, O., Halperin, D.: Finding a Needle in an Exponential Haystack: Discrete Rrt for Exploration of Implicit Roadmaps in Multi-Robot Motion Planning. In: Algorithmic Foundations of Robotics XI, pp. 591–607. Springer (2015)

  34. Ṡucan, I. A., Kavraki, L. E.: Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. In: Algorithmic Foundation of Robotics VIII, pp. 449–464. Springer (2009)

  35. Ṡucan, I. A., Kavraki, L. E.: On the Performance of Random Linear Projections for Sampling-Based Motion Planning. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference On, pp. 2434–2439. IEEE (2009)

  36. Ṡucan, I. A., Moll, M., Kavraki, L. E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012)

    Article  Google Scholar 

  37. Van Den Berg, J. P., Overmars, M. H.: Prioritized Motion Planning for Multiple Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 430–435 (2005)

  38. Vannoy, J., Xiao, J.: Real-time adaptive motion planning (ramp) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Trans. Robot. 24(5), 1199–1212 (2008)

    Article  Google Scholar 

  39. Vernaza, P., Lee, D. D.: Efficient Dynamic Programming for High-Dimensional, Optimal Motion Planning by Spectral Learning of Approximate Value Function Symmetries. In: IEEE International Conference on Robotics and Automation, pp. 6121–6127 (2011)

  40. Wagner, G.: Subdimensional expansion: A framework for computationally tractable multirobot path planning. Master Thesis (2015)

  41. Weghe, M. V., Ferguson, D., Srinivasa, S. S.: Randomized Path Planning for Redundant Manipulators without Inverse Kinematics. In: 7Th IEEE-RAS International Conference on Humanoid Robots, pp. 477–482 (2007)

  42. Wells, A., Plaku, E.: Adaptive Sampling-Based Motion Planning for Mobile Robots with Differential Constraints. In: Conference Towards Autonomous Robotic Systems, pp. 283–295. Springer (2015)

  43. Xanthidis, M., Kyriakopoulos, K. J., Rekleitis, I.: Dynamically Efficient Kinematics for Hyper-Redundant Manipulators. In: The 24Th Mediterranean Conf. on Control and Automation, pp. 207–213, Athens (2016)

  44. Yershova, A., Jaillet, L., Siméon, T., Lavalle, S.M.: Dynamic-domain RRTs: Efficient Exploration by Controlling the Sampling Domain. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3856–3861 (2005)

  45. Yoshida, E.: Humanoid Motion Planning Using Multi-Level Dof Exploitation Based on Randomized Method. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3378–3383 (2005)

  46. Zha, F., Liu, Y., Wang, X., Chen, F., Li, J., Guo, W.: Robot motion planning method based on incremental high-dimensional mixture probabilistic model. Complexity 2018 (2018)

Download references

Acknowledgments

The authors would like to thank the generous support of the Google Faculty Research Award program and the National Science Foundation grants (NSF 0953503, 1513203, 1526862, 1637876, 1659514, 1849291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Xanthidis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xanthidis, M., Esposito, J.M., Rekleitis, I. et al. Motion Planning by Sampling in Subspaces of Progressively Increasing Dimension. J Intell Robot Syst 100, 777–789 (2020). https://doi.org/10.1007/s10846-020-01217-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01217-w

Keywords

Navigation